A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/16118 |
Resumo: | The discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing. |
id |
RCAP_376006d0a8b746ada5903ebbd1c09a98 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/16118 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketingBankingData miningDivide and conquerFeature selectionMarketingThe discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing.John Wiley and Sons2018-06-12T11:10:57Z2019-06-12T00:00:00Z2018-01-01T00:00:00Z20182019-03-08T11:38:25Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/16118eng0266-472010.1111/exsy.12253Moro, S.Cortez, P.Rita, P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:45:15Zoai:repositorio.iscte-iul.pt:10071/16118Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:36.386539Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
title |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
spellingShingle |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing Moro, S. Banking Data mining Divide and conquer Feature selection Marketing |
title_short |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
title_full |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
title_fullStr |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
title_full_unstemmed |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
title_sort |
A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing |
author |
Moro, S. |
author_facet |
Moro, S. Cortez, P. Rita, P. |
author_role |
author |
author2 |
Cortez, P. Rita, P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Moro, S. Cortez, P. Rita, P. |
dc.subject.por.fl_str_mv |
Banking Data mining Divide and conquer Feature selection Marketing |
topic |
Banking Data mining Divide and conquer Feature selection Marketing |
description |
The discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-12T11:10:57Z 2018-01-01T00:00:00Z 2018 2019-06-12T00:00:00Z 2019-03-08T11:38:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/16118 |
url |
http://hdl.handle.net/10071/16118 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0266-4720 10.1111/exsy.12253 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley and Sons |
publisher.none.fl_str_mv |
John Wiley and Sons |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134777311232000 |