A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing

Detalhes bibliográficos
Autor(a) principal: Moro, S.
Data de Publicação: 2018
Outros Autores: Cortez, P., Rita, P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/16118
Resumo: The discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing.
id RCAP_376006d0a8b746ada5903ebbd1c09a98
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/16118
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketingBankingData miningDivide and conquerFeature selectionMarketingThe discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing.John Wiley and Sons2018-06-12T11:10:57Z2019-06-12T00:00:00Z2018-01-01T00:00:00Z20182019-03-08T11:38:25Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/16118eng0266-472010.1111/exsy.12253Moro, S.Cortez, P.Rita, P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:45:15Zoai:repositorio.iscte-iul.pt:10071/16118Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:36.386539Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
title A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
spellingShingle A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
Moro, S.
Banking
Data mining
Divide and conquer
Feature selection
Marketing
title_short A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
title_full A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
title_fullStr A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
title_full_unstemmed A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
title_sort A divide-and-conquer strategy using feature relevance and expert knowledge for enhancing a data mining approach to bank telemarketing
author Moro, S.
author_facet Moro, S.
Cortez, P.
Rita, P.
author_role author
author2 Cortez, P.
Rita, P.
author2_role author
author
dc.contributor.author.fl_str_mv Moro, S.
Cortez, P.
Rita, P.
dc.subject.por.fl_str_mv Banking
Data mining
Divide and conquer
Feature selection
Marketing
topic Banking
Data mining
Divide and conquer
Feature selection
Marketing
description The discovery of knowledge through data mining provides a valuable asset for addressing decision making problems. Although a list of features may characterize a problem, it is often the case that a subset of those features may influence more a certain group of events constituting a sub-problem within the original problem. We propose a divide-and-conquer strategy for data mining using both the data-based sensitivity analysis for extracting feature relevance and expert evaluation for splitting the problem of characterizing telemarketing contacts to sell bank deposits. As a result, the call direction (inbound/outbound) was considered the most suitable candidate feature. The inbound telemarketing sub-problem re-evaluation led to a large increase in targeting performance, confirming the benefits of such approach and considering the importance of telemarketing for business, in particular in bank marketing.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-12T11:10:57Z
2018-01-01T00:00:00Z
2018
2019-06-12T00:00:00Z
2019-03-08T11:38:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/16118
url http://hdl.handle.net/10071/16118
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0266-4720
10.1111/exsy.12253
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv John Wiley and Sons
publisher.none.fl_str_mv John Wiley and Sons
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134777311232000