Numerical Study on the Influence of Tip Clearance

Detalhes bibliográficos
Autor(a) principal: O'Neill, Patrick Leonard
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/7963
Resumo: Due to a constant rise in costs and a continuous demand for travel from customers, airlines look to new technologies as a way of potentially reducing operational costs, such as fuel costs. With such objectives in mind, NASA and other organizations are studying and experimenting new configurations of gas turbines to determine if this could be a viable solution for the near future. Several simulations are run for an axial compressor blade in order to verify the influence in total pressure ratio and flow velocity between the No-Tip Gap model and the Tip Gap model. This will determine the impact of tip clearance on the aforementioned parameters. The CFD simulations will be carried out using FLUENT where it is possible to determine the inlet and outlet conditions of the experiment as well as other boundary conditions to properly present the problem and a realistic solution. In this study two distinct models will be simulated, No-Tip Gap and Tip Gap, each at three different rotational speeds to simulate the impact for different velocities of blade rotation and determine which model would be more beneficial for future turbines. It was concluded that the pressure along the blade using the No-Tip Gap model was higher when compared to the Tip Gap model. This could be explained by simply analysing the surface area of the blade. Being that the blade occupies the area up to the engine casing it will have a greater surface area, hence, transferring more work and having higher pressure at the compressor exit. As for the velocity, the results were reversed, meaning that a higher velocity of flow was found when using the Tip Gap model. The explanation for this higher speed could be the existence of a tip clearance, allowing the flow to pass through this area with no contact with the blade and therefore not reducing the speed of the airflow resulting in a higher outlet velocity.
id RCAP_3981549bd9bae527966f6ee99b040e6b
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/7963
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Numerical Study on the Influence of Tip ClearanceCfdFluentNasaNo-Tip GapTip GapTurbina A GásDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaDue to a constant rise in costs and a continuous demand for travel from customers, airlines look to new technologies as a way of potentially reducing operational costs, such as fuel costs. With such objectives in mind, NASA and other organizations are studying and experimenting new configurations of gas turbines to determine if this could be a viable solution for the near future. Several simulations are run for an axial compressor blade in order to verify the influence in total pressure ratio and flow velocity between the No-Tip Gap model and the Tip Gap model. This will determine the impact of tip clearance on the aforementioned parameters. The CFD simulations will be carried out using FLUENT where it is possible to determine the inlet and outlet conditions of the experiment as well as other boundary conditions to properly present the problem and a realistic solution. In this study two distinct models will be simulated, No-Tip Gap and Tip Gap, each at three different rotational speeds to simulate the impact for different velocities of blade rotation and determine which model would be more beneficial for future turbines. It was concluded that the pressure along the blade using the No-Tip Gap model was higher when compared to the Tip Gap model. This could be explained by simply analysing the surface area of the blade. Being that the blade occupies the area up to the engine casing it will have a greater surface area, hence, transferring more work and having higher pressure at the compressor exit. As for the velocity, the results were reversed, meaning that a higher velocity of flow was found when using the Tip Gap model. The explanation for this higher speed could be the existence of a tip clearance, allowing the flow to pass through this area with no contact with the blade and therefore not reducing the speed of the airflow resulting in a higher outlet velocity.Devido a um aumento constante dos custos e ao continuado aumento na procura por parte de clientes, as companhias aéreas investigam novas tecnologias como forma de reduzir custos operacionais, como os custos de combustível. Com tais objectivos em mente, a NASA e outras organizações estão a estudar e a testar novas configurações de turbinas a gás para determinar se poderá ser uma solução viável num futuro próximo. São realizadas várias simulações numéricas para uma pá de um compressor axial, de forma a verificar a influência da razão de pressão total e velocidade de escoamento na diferença entre a folga na ponta e a ausência de folga no topo da pá. As simulações de CFD foram realizadas utilizando o FLUENT onde é possível determinar as condições de entrada e de saída da experiência bem como as condições de fronteira que permitem colocar o problema corretamente para que seja obtida uma solução realista. Nesta tese foram estudados dois modelos diferentes, No-Tip Gap (sem espaçamento) e Tip Gap (com espaçamento). Cada um destes modelos foi depois simulado com três diferentes velocidades de rotação da pá para que seja possível determinar qual o seu impacto e perceber qual seria mais benéfica em projectos futuros. Após a realização das simulações foi possível determinar que existe uma pressão maior no modelo No-Tip Gap. Esta pressão superior pode ser explicada analisando a área de superfície da pá em ambos os modelos. No modelo No-Tip Gap a pá do compressor ocupa toda a área desde a raiz até à nacele do motor, logo a sua área será superior, transferindo mais trabalho e consequentemente criando uma maior pressão à saída do que o modelo Tip Gap. No que toca à velocidade, os resultados foram o inverso. Uma maior velocidade foi obtida quando simulado o modelo Tip Gap. Esta maior velocidade pode ser explicada devido à existência do espaçamento na ponta da pá. O escoamento passando por este espaço não entra em contacto com a pá, não reduzindo a sua velocidade, resultando numa velocidade de saída mais elevada.Brojo, Francisco Miguel Ribeiro ProençauBibliorumO'Neill, Patrick Leonard2019-12-18T16:59:26Z2017-6-272017-07-242017-07-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/7963TID:202340180enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:47:37Zoai:ubibliorum.ubi.pt:10400.6/7963Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:48:24.331257Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Numerical Study on the Influence of Tip Clearance
title Numerical Study on the Influence of Tip Clearance
spellingShingle Numerical Study on the Influence of Tip Clearance
O'Neill, Patrick Leonard
Cfd
Fluent
Nasa
No-Tip Gap
Tip Gap
Turbina A Gás
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Numerical Study on the Influence of Tip Clearance
title_full Numerical Study on the Influence of Tip Clearance
title_fullStr Numerical Study on the Influence of Tip Clearance
title_full_unstemmed Numerical Study on the Influence of Tip Clearance
title_sort Numerical Study on the Influence of Tip Clearance
author O'Neill, Patrick Leonard
author_facet O'Neill, Patrick Leonard
author_role author
dc.contributor.none.fl_str_mv Brojo, Francisco Miguel Ribeiro Proença
uBibliorum
dc.contributor.author.fl_str_mv O'Neill, Patrick Leonard
dc.subject.por.fl_str_mv Cfd
Fluent
Nasa
No-Tip Gap
Tip Gap
Turbina A Gás
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Cfd
Fluent
Nasa
No-Tip Gap
Tip Gap
Turbina A Gás
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description Due to a constant rise in costs and a continuous demand for travel from customers, airlines look to new technologies as a way of potentially reducing operational costs, such as fuel costs. With such objectives in mind, NASA and other organizations are studying and experimenting new configurations of gas turbines to determine if this could be a viable solution for the near future. Several simulations are run for an axial compressor blade in order to verify the influence in total pressure ratio and flow velocity between the No-Tip Gap model and the Tip Gap model. This will determine the impact of tip clearance on the aforementioned parameters. The CFD simulations will be carried out using FLUENT where it is possible to determine the inlet and outlet conditions of the experiment as well as other boundary conditions to properly present the problem and a realistic solution. In this study two distinct models will be simulated, No-Tip Gap and Tip Gap, each at three different rotational speeds to simulate the impact for different velocities of blade rotation and determine which model would be more beneficial for future turbines. It was concluded that the pressure along the blade using the No-Tip Gap model was higher when compared to the Tip Gap model. This could be explained by simply analysing the surface area of the blade. Being that the blade occupies the area up to the engine casing it will have a greater surface area, hence, transferring more work and having higher pressure at the compressor exit. As for the velocity, the results were reversed, meaning that a higher velocity of flow was found when using the Tip Gap model. The explanation for this higher speed could be the existence of a tip clearance, allowing the flow to pass through this area with no contact with the blade and therefore not reducing the speed of the airflow resulting in a higher outlet velocity.
publishDate 2017
dc.date.none.fl_str_mv 2017-6-27
2017-07-24
2017-07-24T00:00:00Z
2019-12-18T16:59:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/7963
TID:202340180
url http://hdl.handle.net/10400.6/7963
identifier_str_mv TID:202340180
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136378101956608