Influence of collagen fibril alignment in collagen scaffolds mineralization

Detalhes bibliográficos
Autor(a) principal: Roberto, Nuno Gonçalo Rosa
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/117490
Resumo: Bone extracellular matrix (ECM) gives bone its unique mechanical properties, thus being important in bone tissue engineering to mimic its native composition and microstructure. The main component in bone ECM is Type-I collagen, which works as a scaffold for bone cell attachment and mineral deposition. There are two locations where mineralization takes place: the intrafibrillar and interfibrillar spaces of collagen fibrils. Several theories try to explain mineral formation in bone tissue. However, none of them was proven right, and so, the mechanism for mineralization facilitated by the collagen lattice is still unknown. This way, it is essential to study such a mechanism and develop bone tissue engineering approaches to mimic bone ECM. In this work, we hypothesized that collagen fibrils alignment would promote scaffolds mineralization. To prove it, we 3D printed fibrillar collagen hydrogels scaffolds using the suspension 3D printing technique, in which a gelatin slurry was used as a suspension bath. First, an optimization of the printing process was performed. Then scaffolds were printed, choosing the finest (123 ± 25 µm) and largest fiber diameter (215 ± 66 µm) obtained. Fiber diameter size was proven to affect the collagen fiber alignment inside the scaffolds and, consequently, affect mineral precipitation. The smallest fiber diameter scaffold showed signs of mineralization after one day inside a mineralization solution. In contrast, the largest fiber scaffold only presented mineralization signs after three days of submersion. Moreover, suspended electrowriting was introduced in this dissertation, obtaining a 40 µm jet diameter inside a castor oil bath, proving to be a promising additive manufacturing technology to achieve higher resolution constructs when 3D printing hydrogels.
id RCAP_4098a88bb282b05c8d67b1dacf774a21
oai_identifier_str oai:run.unl.pt:10362/117490
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Influence of collagen fibril alignment in collagen scaffolds mineralizationhydrogelsscaffoldscollagensuspension printingsuspended electrowritingbone regenerationDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaBone extracellular matrix (ECM) gives bone its unique mechanical properties, thus being important in bone tissue engineering to mimic its native composition and microstructure. The main component in bone ECM is Type-I collagen, which works as a scaffold for bone cell attachment and mineral deposition. There are two locations where mineralization takes place: the intrafibrillar and interfibrillar spaces of collagen fibrils. Several theories try to explain mineral formation in bone tissue. However, none of them was proven right, and so, the mechanism for mineralization facilitated by the collagen lattice is still unknown. This way, it is essential to study such a mechanism and develop bone tissue engineering approaches to mimic bone ECM. In this work, we hypothesized that collagen fibrils alignment would promote scaffolds mineralization. To prove it, we 3D printed fibrillar collagen hydrogels scaffolds using the suspension 3D printing technique, in which a gelatin slurry was used as a suspension bath. First, an optimization of the printing process was performed. Then scaffolds were printed, choosing the finest (123 ± 25 µm) and largest fiber diameter (215 ± 66 µm) obtained. Fiber diameter size was proven to affect the collagen fiber alignment inside the scaffolds and, consequently, affect mineral precipitation. The smallest fiber diameter scaffold showed signs of mineralization after one day inside a mineralization solution. In contrast, the largest fiber scaffold only presented mineralization signs after three days of submersion. Moreover, suspended electrowriting was introduced in this dissertation, obtaining a 40 µm jet diameter inside a castor oil bath, proving to be a promising additive manufacturing technology to achieve higher resolution constructs when 3D printing hydrogels.A matrix extra celular (ECM) do osso confere-lhe as suas únicas propriedades mecânicas e, portanto, torna-se importante mimetizar a composição e microestrutura nativa da ECM em engenharia de tecidos ósseos. O colagénio tipo-I é o principal componente da ECM e funciona como suporte para adesão celular e deposição de minerais, podendo a mineralização ocorrer nos espaços Intra e interfibrilares do colagénio. Existem algumas teorias que tentam explicar os mecanismos de formação de minerais no tecido ósseo. Contudo, nenhuma foi comprovada, fazendo com que, o mecanismo pelo qual a mineralização facilitada por colagénio ocorre, seja ainda desconhecido. Desta forma, estudar este mecanismo e desenvolver técnicas, em engenharia de tecidos, para que seja possível mimetizar a ECM do osso, torna-se essencial. Neste projeto, teorizámos que o alinhamento das fibrilas de colagénio em scaffolds iriam promover a sua mineralização. Deste modo, hidrogéis de colagénio fibrilar foram impressos recorrendo à técnica de impressão em suspensão, na qual foi utilizado um banho de suspensão à base de gelatina. Inicialmente, a otimização do processo de impressão foi efetuada. De seguida, as fibras mais estreitas (123 ± 25 µm) e largas (215 ± 66 µm) foram escolhidas para realizar a impressão das estruturas desejadas. Foi provado que o diâmetro das fibras influencia o alinhamento das fibrilas de colagénio nas estruturas e, consequentemente, a sua mineralização. As fibras de menor dimensão apresentaram sinais de mineralização após um dia de submersão na solução de mineralização, enquanto que, as fibras mais largas exibiram sinais de deposição de minerais apenas após três dias. Adicionalmente, a técnica de suspended electrowriting foi introduzida nesta dissertação, obtendo-se um diâmetro de jato de 40 µm dentro de um banho de óleo de ricínio, provando que esta é uma técnica promissora de fabrico aditivo, que nos permite atingir melhores resoluções na impressão 3D de hidrogéis.Castilho, MiguelBorges, JoãoRUNRoberto, Nuno Gonçalo Rosa2021-05-11T09:50:55Z2021-0320212021-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/117490enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:00:34Zoai:run.unl.pt:10362/117490Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:37.891297Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Influence of collagen fibril alignment in collagen scaffolds mineralization
title Influence of collagen fibril alignment in collagen scaffolds mineralization
spellingShingle Influence of collagen fibril alignment in collagen scaffolds mineralization
Roberto, Nuno Gonçalo Rosa
hydrogels
scaffolds
collagen
suspension printing
suspended electrowriting
bone regeneration
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
title_short Influence of collagen fibril alignment in collagen scaffolds mineralization
title_full Influence of collagen fibril alignment in collagen scaffolds mineralization
title_fullStr Influence of collagen fibril alignment in collagen scaffolds mineralization
title_full_unstemmed Influence of collagen fibril alignment in collagen scaffolds mineralization
title_sort Influence of collagen fibril alignment in collagen scaffolds mineralization
author Roberto, Nuno Gonçalo Rosa
author_facet Roberto, Nuno Gonçalo Rosa
author_role author
dc.contributor.none.fl_str_mv Castilho, Miguel
Borges, João
RUN
dc.contributor.author.fl_str_mv Roberto, Nuno Gonçalo Rosa
dc.subject.por.fl_str_mv hydrogels
scaffolds
collagen
suspension printing
suspended electrowriting
bone regeneration
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
topic hydrogels
scaffolds
collagen
suspension printing
suspended electrowriting
bone regeneration
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
description Bone extracellular matrix (ECM) gives bone its unique mechanical properties, thus being important in bone tissue engineering to mimic its native composition and microstructure. The main component in bone ECM is Type-I collagen, which works as a scaffold for bone cell attachment and mineral deposition. There are two locations where mineralization takes place: the intrafibrillar and interfibrillar spaces of collagen fibrils. Several theories try to explain mineral formation in bone tissue. However, none of them was proven right, and so, the mechanism for mineralization facilitated by the collagen lattice is still unknown. This way, it is essential to study such a mechanism and develop bone tissue engineering approaches to mimic bone ECM. In this work, we hypothesized that collagen fibrils alignment would promote scaffolds mineralization. To prove it, we 3D printed fibrillar collagen hydrogels scaffolds using the suspension 3D printing technique, in which a gelatin slurry was used as a suspension bath. First, an optimization of the printing process was performed. Then scaffolds were printed, choosing the finest (123 ± 25 µm) and largest fiber diameter (215 ± 66 µm) obtained. Fiber diameter size was proven to affect the collagen fiber alignment inside the scaffolds and, consequently, affect mineral precipitation. The smallest fiber diameter scaffold showed signs of mineralization after one day inside a mineralization solution. In contrast, the largest fiber scaffold only presented mineralization signs after three days of submersion. Moreover, suspended electrowriting was introduced in this dissertation, obtaining a 40 µm jet diameter inside a castor oil bath, proving to be a promising additive manufacturing technology to achieve higher resolution constructs when 3D printing hydrogels.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-11T09:50:55Z
2021-03
2021
2021-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/117490
url http://hdl.handle.net/10362/117490
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138045403856896