Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1021/acsabm.0c01507 http://hdl.handle.net/11449/205857 |
Resumo: | The use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes. |
id |
UNSP_80ab36038dee5a25e269dbdfe3500fdc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/205857 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applicationsamorphous precursorapatitemineralizationnanofibrous scaffoldstype-I collagenThe use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes.Department of General Dental Sciences Marquette University School of DentistryDepartment of Physics School of Sciences São Paulo State University (UNESP)Department of Restorative Dentistry School of Dentistry of Ribeirão Preto University of São Paulo (USP)Department of Physics School of Sciences São Paulo State University (UNESP)Marquette University School of DentistryUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Bim-Júnior, Odair [UNESP]Curylofo-Zotti, FabianaReis, MarianaAlania, YvetteLisboa-Filho, Paulo N. [UNESP]Bedran-Russo, Ana K.2021-06-25T10:22:27Z2021-06-25T10:22:27Z2021-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2514-2522http://dx.doi.org/10.1021/acsabm.0c01507ACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021.2576-6422http://hdl.handle.net/11449/20585710.1021/acsabm.0c015072-s2.0-85100637838Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Bio Materialsinfo:eu-repo/semantics/openAccess2021-10-22T19:03:18Zoai:repositorio.unesp.br:11449/205857Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:31:14.751894Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
title |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
spellingShingle |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications Bim-Júnior, Odair [UNESP] amorphous precursor apatite mineralization nanofibrous scaffolds type-I collagen |
title_short |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
title_full |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
title_fullStr |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
title_full_unstemmed |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
title_sort |
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications |
author |
Bim-Júnior, Odair [UNESP] |
author_facet |
Bim-Júnior, Odair [UNESP] Curylofo-Zotti, Fabiana Reis, Mariana Alania, Yvette Lisboa-Filho, Paulo N. [UNESP] Bedran-Russo, Ana K. |
author_role |
author |
author2 |
Curylofo-Zotti, Fabiana Reis, Mariana Alania, Yvette Lisboa-Filho, Paulo N. [UNESP] Bedran-Russo, Ana K. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Marquette University School of Dentistry Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Bim-Júnior, Odair [UNESP] Curylofo-Zotti, Fabiana Reis, Mariana Alania, Yvette Lisboa-Filho, Paulo N. [UNESP] Bedran-Russo, Ana K. |
dc.subject.por.fl_str_mv |
amorphous precursor apatite mineralization nanofibrous scaffolds type-I collagen |
topic |
amorphous precursor apatite mineralization nanofibrous scaffolds type-I collagen |
description |
The use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:22:27Z 2021-06-25T10:22:27Z 2021-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1021/acsabm.0c01507 ACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021. 2576-6422 http://hdl.handle.net/11449/205857 10.1021/acsabm.0c01507 2-s2.0-85100637838 |
url |
http://dx.doi.org/10.1021/acsabm.0c01507 http://hdl.handle.net/11449/205857 |
identifier_str_mv |
ACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021. 2576-6422 10.1021/acsabm.0c01507 2-s2.0-85100637838 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ACS Applied Bio Materials |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2514-2522 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129081193005056 |