Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications

Detalhes bibliográficos
Autor(a) principal: Bim-Júnior, Odair [UNESP]
Data de Publicação: 2021
Outros Autores: Curylofo-Zotti, Fabiana, Reis, Mariana, Alania, Yvette, Lisboa-Filho, Paulo N. [UNESP], Bedran-Russo, Ana K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acsabm.0c01507
http://hdl.handle.net/11449/205857
Resumo: The use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes.
id UNSP_80ab36038dee5a25e269dbdfe3500fdc
oai_identifier_str oai:repositorio.unesp.br:11449/205857
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applicationsamorphous precursorapatitemineralizationnanofibrous scaffoldstype-I collagenThe use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes.Department of General Dental Sciences Marquette University School of DentistryDepartment of Physics School of Sciences São Paulo State University (UNESP)Department of Restorative Dentistry School of Dentistry of Ribeirão Preto University of São Paulo (USP)Department of Physics School of Sciences São Paulo State University (UNESP)Marquette University School of DentistryUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Bim-Júnior, Odair [UNESP]Curylofo-Zotti, FabianaReis, MarianaAlania, YvetteLisboa-Filho, Paulo N. [UNESP]Bedran-Russo, Ana K.2021-06-25T10:22:27Z2021-06-25T10:22:27Z2021-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2514-2522http://dx.doi.org/10.1021/acsabm.0c01507ACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021.2576-6422http://hdl.handle.net/11449/20585710.1021/acsabm.0c015072-s2.0-85100637838Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Bio Materialsinfo:eu-repo/semantics/openAccess2021-10-22T19:03:18Zoai:repositorio.unesp.br:11449/205857Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:31:14.751894Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
title Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
spellingShingle Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
Bim-Júnior, Odair [UNESP]
amorphous precursor
apatite
mineralization
nanofibrous scaffolds
type-I collagen
title_short Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
title_full Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
title_fullStr Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
title_full_unstemmed Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
title_sort Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications
author Bim-Júnior, Odair [UNESP]
author_facet Bim-Júnior, Odair [UNESP]
Curylofo-Zotti, Fabiana
Reis, Mariana
Alania, Yvette
Lisboa-Filho, Paulo N. [UNESP]
Bedran-Russo, Ana K.
author_role author
author2 Curylofo-Zotti, Fabiana
Reis, Mariana
Alania, Yvette
Lisboa-Filho, Paulo N. [UNESP]
Bedran-Russo, Ana K.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Marquette University School of Dentistry
Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Bim-Júnior, Odair [UNESP]
Curylofo-Zotti, Fabiana
Reis, Mariana
Alania, Yvette
Lisboa-Filho, Paulo N. [UNESP]
Bedran-Russo, Ana K.
dc.subject.por.fl_str_mv amorphous precursor
apatite
mineralization
nanofibrous scaffolds
type-I collagen
topic amorphous precursor
apatite
mineralization
nanofibrous scaffolds
type-I collagen
description The use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:22:27Z
2021-06-25T10:22:27Z
2021-03-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acsabm.0c01507
ACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021.
2576-6422
http://hdl.handle.net/11449/205857
10.1021/acsabm.0c01507
2-s2.0-85100637838
url http://dx.doi.org/10.1021/acsabm.0c01507
http://hdl.handle.net/11449/205857
identifier_str_mv ACS Applied Bio Materials, v. 4, n. 3, p. 2514-2522, 2021.
2576-6422
10.1021/acsabm.0c01507
2-s2.0-85100637838
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ACS Applied Bio Materials
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2514-2522
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129081193005056