Nearly recombining processes and the calculation of expectations

Detalhes bibliográficos
Autor(a) principal: van den Berg, Imme
Data de Publicação: 2008
Outros Autores: Amaro, Elsa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/1395
Resumo: In the context of Nonstandard Analysis, we study stochastic difference equations with infinitesimal time-steps. In particular we give a necessary and sufficient condition for a solution to be nearly-equivalent to a recombining stochastic process. The characterization is based upon a partial differential equation involving the trend and the conditional variance of the original process. An analogy with Ito's Lemma is pointed out. As an application we obtain a method for approximation of expectations, in terms of two ordinary differential equations, also involving the trend and the conditional variance of the original process, and of Gaussian integrals.
id RCAP_41e5f5e638c7d3373c47bc9327edba01
oai_identifier_str oai:dspace.uevora.pt:10174/1395
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Nearly recombining processes and the calculation of expectationsDiscrete stochastic processesrecombinationnear-equivalencestroboscopyexpectationsIto's LemmaIn the context of Nonstandard Analysis, we study stochastic difference equations with infinitesimal time-steps. In particular we give a necessary and sufficient condition for a solution to be nearly-equivalent to a recombining stochastic process. The characterization is based upon a partial differential equation involving the trend and the conditional variance of the original process. An analogy with Ito's Lemma is pointed out. As an application we obtain a method for approximation of expectations, in terms of two ordinary differential equations, also involving the trend and the conditional variance of the original process, and of Gaussian integrals.2008-12-30T16:26:04Z2008-12-302008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19238 bytesapplication/pdfhttp://hdl.handle.net/10174/1395http://hdl.handle.net/10174/1395engp. 389 - 417ARIMA9livreivdb@uevora.ptnd340van den Berg, ImmeAmaro, Elsainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:37:29Zoai:dspace.uevora.pt:10174/1395Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:57:32.704029Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Nearly recombining processes and the calculation of expectations
title Nearly recombining processes and the calculation of expectations
spellingShingle Nearly recombining processes and the calculation of expectations
van den Berg, Imme
Discrete stochastic processes
recombination
near-equivalence
stroboscopy
expectations
Ito's Lemma
title_short Nearly recombining processes and the calculation of expectations
title_full Nearly recombining processes and the calculation of expectations
title_fullStr Nearly recombining processes and the calculation of expectations
title_full_unstemmed Nearly recombining processes and the calculation of expectations
title_sort Nearly recombining processes and the calculation of expectations
author van den Berg, Imme
author_facet van den Berg, Imme
Amaro, Elsa
author_role author
author2 Amaro, Elsa
author2_role author
dc.contributor.author.fl_str_mv van den Berg, Imme
Amaro, Elsa
dc.subject.por.fl_str_mv Discrete stochastic processes
recombination
near-equivalence
stroboscopy
expectations
Ito's Lemma
topic Discrete stochastic processes
recombination
near-equivalence
stroboscopy
expectations
Ito's Lemma
description In the context of Nonstandard Analysis, we study stochastic difference equations with infinitesimal time-steps. In particular we give a necessary and sufficient condition for a solution to be nearly-equivalent to a recombining stochastic process. The characterization is based upon a partial differential equation involving the trend and the conditional variance of the original process. An analogy with Ito's Lemma is pointed out. As an application we obtain a method for approximation of expectations, in terms of two ordinary differential equations, also involving the trend and the conditional variance of the original process, and of Gaussian integrals.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-30T16:26:04Z
2008-12-30
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/1395
http://hdl.handle.net/10174/1395
url http://hdl.handle.net/10174/1395
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv p. 389 - 417
ARIMA
9
livre
ivdb@uevora.pt
nd
340
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 19238 bytes
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136459615109120