Complexity of gradient descent for multiobjective optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1080/10556788.2018.1510928 |
Texto Completo: | http://hdl.handle.net/10316/89443 https://doi.org/10.1080/10556788.2018.1510928 |
Resumo: | A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function. |
id |
RCAP_42476d2ae694523a10133fc431f6f5d2 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89443 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Complexity of gradient descent for multiobjective optimizationMultiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexityA number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function.Taylor & Francis2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89443http://hdl.handle.net/10316/89443https://doi.org/10.1080/10556788.2018.1510928enghttps://www.tandfonline.com/doi/full/10.1080/10556788.2018.1510928Fliege, JörgVaz, António Ismael FreitasVicente, Luís Nunesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T06:21:18Zoai:estudogeral.uc.pt:10316/89443Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:45.380619Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Complexity of gradient descent for multiobjective optimization |
title |
Complexity of gradient descent for multiobjective optimization |
spellingShingle |
Complexity of gradient descent for multiobjective optimization Complexity of gradient descent for multiobjective optimization Fliege, Jörg Multiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexity Fliege, Jörg Multiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexity |
title_short |
Complexity of gradient descent for multiobjective optimization |
title_full |
Complexity of gradient descent for multiobjective optimization |
title_fullStr |
Complexity of gradient descent for multiobjective optimization Complexity of gradient descent for multiobjective optimization |
title_full_unstemmed |
Complexity of gradient descent for multiobjective optimization Complexity of gradient descent for multiobjective optimization |
title_sort |
Complexity of gradient descent for multiobjective optimization |
author |
Fliege, Jörg |
author_facet |
Fliege, Jörg Fliege, Jörg Vaz, António Ismael Freitas Vicente, Luís Nunes Vaz, António Ismael Freitas Vicente, Luís Nunes |
author_role |
author |
author2 |
Vaz, António Ismael Freitas Vicente, Luís Nunes |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fliege, Jörg Vaz, António Ismael Freitas Vicente, Luís Nunes |
dc.subject.por.fl_str_mv |
Multiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexity |
topic |
Multiobjective optimization; gradient descent; steepest descent; global rates; worst-case complexity |
description |
A number of first-order methods have been proposed for smooth multiobjective optimization for which some form of convergence to first-order criticality has been proved. Such convergence is global in the sense of being independent of the starting point. In this paper, we analyse the rate of convergence of gradient descent for smooth unconstrained multiobjective optimization, and we do it for non-convex, convex, and strongly convex vector functions. These global rates are shown to be the same as for gradient descent in single-objective optimization and correspond to appropriate worst-case complexity bounds. In the convex cases, the rates are given for implicit scalarizations of the problem vector function. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89443 http://hdl.handle.net/10316/89443 https://doi.org/10.1080/10556788.2018.1510928 |
url |
http://hdl.handle.net/10316/89443 https://doi.org/10.1080/10556788.2018.1510928 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/10556788.2018.1510928 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822183383279599617 |
dc.identifier.doi.none.fl_str_mv |
10.1080/10556788.2018.1510928 |