A SURVEY ON MULTIOBJECTIVE DESCENT METHODS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000300585 |
Resumo: | We present a rigorous and comprehensive survey on extensions to the multicriteria setting of three well-known scalar optimization algorithms. Multiobjective versions of the steepest descent, the projected gradient and the Newton methods are analyzed in detail. At each iteration, the search directions of these methods are computed by solving real-valued optimization problems and, in order to guarantee an adequate objective value decrease, Armijo-like rules are implemented by means of a backtracking procedure. Under standard assumptions, convergence to Pareto (weak Pareto) optima is established. For the Newton method, superlinear convergence is proved and, assuming Lipschitz continuity of the objectives second derivatives, it is shown that the rate is quadratic |
id |
SOBRAPO-1_6144b7da0d140dc6bdd7c5b7ed3543f5 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382014000300585 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODSmultiobjective optimizationNewton methodnonlinear optimizationprojected gradient methodsteepest descent methodWe present a rigorous and comprehensive survey on extensions to the multicriteria setting of three well-known scalar optimization algorithms. Multiobjective versions of the steepest descent, the projected gradient and the Newton methods are analyzed in detail. At each iteration, the search directions of these methods are computed by solving real-valued optimization problems and, in order to guarantee an adequate objective value decrease, Armijo-like rules are implemented by means of a backtracking procedure. Under standard assumptions, convergence to Pareto (weak Pareto) optima is established. For the Newton method, superlinear convergence is proved and, assuming Lipschitz continuity of the objectives second derivatives, it is shown that the rate is quadraticSociedade Brasileira de Pesquisa Operacional2014-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000300585Pesquisa Operacional v.34 n.3 2014reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2014.034.03.0585info:eu-repo/semantics/openAccessFukuda,Ellen H.Drummond,Luis Mauricio Grañaeng2014-11-12T00:00:00Zoai:scielo:S0101-74382014000300585Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2014-11-12T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
title |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
spellingShingle |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS Fukuda,Ellen H. multiobjective optimization Newton method nonlinear optimization projected gradient method steepest descent method |
title_short |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
title_full |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
title_fullStr |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
title_full_unstemmed |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
title_sort |
A SURVEY ON MULTIOBJECTIVE DESCENT METHODS |
author |
Fukuda,Ellen H. |
author_facet |
Fukuda,Ellen H. Drummond,Luis Mauricio Graña |
author_role |
author |
author2 |
Drummond,Luis Mauricio Graña |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fukuda,Ellen H. Drummond,Luis Mauricio Graña |
dc.subject.por.fl_str_mv |
multiobjective optimization Newton method nonlinear optimization projected gradient method steepest descent method |
topic |
multiobjective optimization Newton method nonlinear optimization projected gradient method steepest descent method |
description |
We present a rigorous and comprehensive survey on extensions to the multicriteria setting of three well-known scalar optimization algorithms. Multiobjective versions of the steepest descent, the projected gradient and the Newton methods are analyzed in detail. At each iteration, the search directions of these methods are computed by solving real-valued optimization problems and, in order to guarantee an adequate objective value decrease, Armijo-like rules are implemented by means of a backtracking procedure. Under standard assumptions, convergence to Pareto (weak Pareto) optima is established. For the Newton method, superlinear convergence is proved and, assuming Lipschitz continuity of the objectives second derivatives, it is shown that the rate is quadratic |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000300585 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382014000300585 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2014.034.03.0585 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.34 n.3 2014 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017768587264 |