Cancellative conjugation semigroups and monoids

Detalhes bibliográficos
Autor(a) principal: Garrão, Ana Paula
Data de Publicação: 2020
Outros Autores: Martins-Ferreira, Nelson, Raposo, Margarida, Sobral, Manuela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89458
https://doi.org/10.1007/s00233-019-10070-9
Resumo: We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.
id RCAP_42fdc4d60edb0452c22edbd79031bc1d
oai_identifier_str oai:estudogeral.uc.pt:10316/89458
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Cancellative conjugation semigroups and monoidsAdmissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoidWe show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.Springer Verlag2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89458http://hdl.handle.net/10316/89458https://doi.org/10.1007/s00233-019-10070-9enghttps://link.springer.com/article/10.1007/s00233-019-10070-9Garrão, Ana PaulaMartins-Ferreira, NelsonRaposo, MargaridaSobral, Manuelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:36:12Zoai:estudogeral.uc.pt:10316/89458Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:45.951546Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Cancellative conjugation semigroups and monoids
title Cancellative conjugation semigroups and monoids
spellingShingle Cancellative conjugation semigroups and monoids
Garrão, Ana Paula
Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid
title_short Cancellative conjugation semigroups and monoids
title_full Cancellative conjugation semigroups and monoids
title_fullStr Cancellative conjugation semigroups and monoids
title_full_unstemmed Cancellative conjugation semigroups and monoids
title_sort Cancellative conjugation semigroups and monoids
author Garrão, Ana Paula
author_facet Garrão, Ana Paula
Martins-Ferreira, Nelson
Raposo, Margarida
Sobral, Manuela
author_role author
author2 Martins-Ferreira, Nelson
Raposo, Margarida
Sobral, Manuela
author2_role author
author
author
dc.contributor.author.fl_str_mv Garrão, Ana Paula
Martins-Ferreira, Nelson
Raposo, Margarida
Sobral, Manuela
dc.subject.por.fl_str_mv Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid
topic Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid
description We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89458
http://hdl.handle.net/10316/89458
https://doi.org/10.1007/s00233-019-10070-9
url http://hdl.handle.net/10316/89458
https://doi.org/10.1007/s00233-019-10070-9
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://link.springer.com/article/10.1007/s00233-019-10070-9
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992897740800