Cancellative conjugation semigroups and monoids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/89458 https://doi.org/10.1007/s00233-019-10070-9 |
Resumo: | We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions. |
id |
RCAP_42fdc4d60edb0452c22edbd79031bc1d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89458 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Cancellative conjugation semigroups and monoidsAdmissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoidWe show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions.Springer Verlag2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89458http://hdl.handle.net/10316/89458https://doi.org/10.1007/s00233-019-10070-9enghttps://link.springer.com/article/10.1007/s00233-019-10070-9Garrão, Ana PaulaMartins-Ferreira, NelsonRaposo, MargaridaSobral, Manuelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:36:12Zoai:estudogeral.uc.pt:10316/89458Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:45.951546Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Cancellative conjugation semigroups and monoids |
title |
Cancellative conjugation semigroups and monoids |
spellingShingle |
Cancellative conjugation semigroups and monoids Garrão, Ana Paula Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid |
title_short |
Cancellative conjugation semigroups and monoids |
title_full |
Cancellative conjugation semigroups and monoids |
title_fullStr |
Cancellative conjugation semigroups and monoids |
title_full_unstemmed |
Cancellative conjugation semigroups and monoids |
title_sort |
Cancellative conjugation semigroups and monoids |
author |
Garrão, Ana Paula |
author_facet |
Garrão, Ana Paula Martins-Ferreira, Nelson Raposo, Margarida Sobral, Manuela |
author_role |
author |
author2 |
Martins-Ferreira, Nelson Raposo, Margarida Sobral, Manuela |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Garrão, Ana Paula Martins-Ferreira, Nelson Raposo, Margarida Sobral, Manuela |
dc.subject.por.fl_str_mv |
Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid |
topic |
Admissibility diagrams; Weakly Mal’tsev category; Conjugation semigroups; Internal monoid; Internal groupoid |
description |
We show that the category of cancellative conjugation semigroups is weakly Mal’tsev and give a characterization of all admissible diagrams there. In the category of cancellative conjugation monoids we describe, for Schreier split epimorphisms with codomain B and kernel X, all morphisms h:X→B which induce a reflexive graph, an internal category or an internal groupoid. We describe Schreier split epimorphisms in terms of external actions and consider the notions of precrossed semimodule, crossed semimodule and crossed module in the context of cancellative conjugation monoids. In this category we prove that a relative version of the so-called “Smith is Huq” condition for Schreier split epimorphisms holds as well as other relative conditions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89458 http://hdl.handle.net/10316/89458 https://doi.org/10.1007/s00233-019-10070-9 |
url |
http://hdl.handle.net/10316/89458 https://doi.org/10.1007/s00233-019-10070-9 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://link.springer.com/article/10.1007/s00233-019-10070-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133992897740800 |