On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices

Detalhes bibliográficos
Autor(a) principal: Cardoso, Domingos M.
Data de Publicação: 2018
Outros Autores: Pastén, Germain, Rojo, Oscar
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/23003
Resumo: Let $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that \begin{equation*} m_{G}(\alpha) \geq p(G) - q(G) \end{equation*} with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality \begin{equation*} m_{G}(\alpha)= p(G)-q(G)+m_{N}(\alpha) \end{equation*} is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given.
id RCAP_440f41a11d49dcc096682d8981af9fd6
oai_identifier_str oai:ria.ua.pt:10773/23003
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant verticesAdjacency matrixSignless Laplacian matrixLaplacian matrixConvex combination of matricesGraph eigenvaluesLet $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that \begin{equation*} m_{G}(\alpha) \geq p(G) - q(G) \end{equation*} with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality \begin{equation*} m_{G}(\alpha)= p(G)-q(G)+m_{N}(\alpha) \end{equation*} is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given.Elsevier2018-04-162018-04-16T00:00:00Z2020-04-09T10:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/23003eng0024-379510.1016/j.laa.2018.04.013Cardoso, Domingos M.Pastén, GermainRojo, Oscarinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:14:16Zoai:ria.ua.pt:10773/23003Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:14:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
title On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
spellingShingle On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
Cardoso, Domingos M.
Adjacency matrix
Signless Laplacian matrix
Laplacian matrix
Convex combination of matrices
Graph eigenvalues
title_short On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
title_full On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
title_fullStr On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
title_full_unstemmed On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
title_sort On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
author Cardoso, Domingos M.
author_facet Cardoso, Domingos M.
Pastén, Germain
Rojo, Oscar
author_role author
author2 Pastén, Germain
Rojo, Oscar
author2_role author
author
dc.contributor.author.fl_str_mv Cardoso, Domingos M.
Pastén, Germain
Rojo, Oscar
dc.subject.por.fl_str_mv Adjacency matrix
Signless Laplacian matrix
Laplacian matrix
Convex combination of matrices
Graph eigenvalues
topic Adjacency matrix
Signless Laplacian matrix
Laplacian matrix
Convex combination of matrices
Graph eigenvalues
description Let $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertices and quasi-pendant vertices of $G$, respectively. Let $m_{G}(\alpha)$ be the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$. It is proved that \begin{equation*} m_{G}(\alpha) \geq p(G) - q(G) \end{equation*} with equality if each internal vertex is a quasi-pendant vertex. If there is at least one internal vertex which is not a quasi-pendant vertex, the equality \begin{equation*} m_{G}(\alpha)= p(G)-q(G)+m_{N}(\alpha) \end{equation*} is determined in which $m_{N}(\alpha)$ is the multiplicity of $\alpha$ as eigenvalue of the matrix $N$. This matrix is obtained from $A_{\alpha}(G)$ taking the entries corresponding to the internal vertices which are non quasi-pendant vertices. These results are applied to search for the multiplicity of $\alpha$ as eigenvalue of $A_{\alpha}(G)$ when $G$ is a path, a caterpillar, a circular caterpillar, a generalized Bethe tree or a Bethe tree. For the Bethe tree case, a simple formula for the nullity is given.
publishDate 2018
dc.date.none.fl_str_mv 2018-04-16
2018-04-16T00:00:00Z
2020-04-09T10:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/23003
url http://hdl.handle.net/10773/23003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0024-3795
10.1016/j.laa.2018.04.013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543669605990400