Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/159890 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and Analytics |
id |
RCAP_45f5aa14cafd09c5c14cb5d4b8f12d1d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/159890 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisionsIndustrial marketingMarketing attributionAttribution modelingDigital marketingData-driven marketingCustomer insightsSDG 8 - Decent work and economic growthSDG 9 - Industry, innovation and infrastructureDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoProject Work presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and AnalyticsTo build a solid marketing and sales process, B2B companies invest in robust CRM and Marketing automation systems to help teams to identify and manage companies, contacts, interactions, sales opportunities and more. These systems offer several report types for different roles within the company, being the Marketing Attribution one of the most important to marketing leaders when analyzing what are the campaigns, channels and tactics that drive more revenue. This information is key when choosing which channels companies should allocate budget, but these tools can’t track all touchpoints in the buying journey, which can lead marketing leaders to make misleading decisions on where to invest their budgets. This research tested and analyzed an experiment applied in a prominent B2B company that added a layer of customer-level sourced data to what is tracked by the attribution tool,suggesting a hybrid attribution model that is able to identify hidden touch points and re-distribute the weights of credits attributed. To perform the study, an experimental research collected and analyzed data from a sample of 220 purchase paths, discovering that marketing attribution models widely adopted by companies can be significantly improved when granular user-level data is added to the view. It has significant managerial contributions as marketing leaders can do a better channel performance analysis and make more informed decisions when allocating investments.Dalmoro, MarlonRUNSantana, Rafael de Oliveira2023-11-13T11:29:20Z2023-10-242023-10-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/159890TID:203384407enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:23Zoai:run.unl.pt:10362/159890Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:45.527812Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
title |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
spellingShingle |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions Santana, Rafael de Oliveira Industrial marketing Marketing attribution Attribution modeling Digital marketing Data-driven marketing Customer insights SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
title_full |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
title_fullStr |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
title_full_unstemmed |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
title_sort |
Marketing Attribution in B2B Companies: Associating software and customer data to increase confidence in data-driven channel optimization decisions |
author |
Santana, Rafael de Oliveira |
author_facet |
Santana, Rafael de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dalmoro, Marlon RUN |
dc.contributor.author.fl_str_mv |
Santana, Rafael de Oliveira |
dc.subject.por.fl_str_mv |
Industrial marketing Marketing attribution Attribution modeling Digital marketing Data-driven marketing Customer insights SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Industrial marketing Marketing attribution Attribution modeling Digital marketing Data-driven marketing Customer insights SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Digital Marketing and Analytics |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-13T11:29:20Z 2023-10-24 2023-10-24T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/159890 TID:203384407 |
url |
http://hdl.handle.net/10362/159890 |
identifier_str_mv |
TID:203384407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138159559180288 |