Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach

Detalhes bibliográficos
Autor(a) principal: Owusu-Ansah, Dominic
Data de Publicação: 2022
Outros Autores: Tinoco, Joaquim, Correia, António A. S., Oliveira, Paulo J. Venda
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/80703
Resumo: Soil-cement mixtures reinforced with fibres are an alternative method of chemical soil stabilisation in which the inherent disadvantage of low or no tensile or flexural strength is overcome by incorporating fibres. These mixtures require a significant amount of time and resources for comprehensive laboratory characterisation, because a considerable number of parameters are involved. Therefore, the implementation of a Machine Learning (ML) approach provides an alternative way to predict the mechanical properties of soil-cement mixtures reinforced with fibres. In this study, Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), and Multiple Regression (MR) algorithms were trained for predicting the elastic modulus of soil-cement mixtures reinforced with fibres. For ML algorithms training, a dataset of 121 records was used, comprising 16 properties of the composite material (soil, binder, and fibres). ANN and RF showed a promising determination coefficient (R<sup>2</sup> ≥ 0.93) on elastic modulus prediction. Moreover, the results of the proposed models are consistent with the findings that the fibre and binder content have a significant effect on the elastic modulus.
id RCAP_4dcc6e7433717921122551cb534c19e2
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/80703
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approachSoil-cement mixturesReinforced soilFibresMachine learningElastic modulusScience & TechnologySoil-cement mixtures reinforced with fibres are an alternative method of chemical soil stabilisation in which the inherent disadvantage of low or no tensile or flexural strength is overcome by incorporating fibres. These mixtures require a significant amount of time and resources for comprehensive laboratory characterisation, because a considerable number of parameters are involved. Therefore, the implementation of a Machine Learning (ML) approach provides an alternative way to predict the mechanical properties of soil-cement mixtures reinforced with fibres. In this study, Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), and Multiple Regression (MR) algorithms were trained for predicting the elastic modulus of soil-cement mixtures reinforced with fibres. For ML algorithms training, a dataset of 121 records was used, comprising 16 properties of the composite material (soil, binder, and fibres). ANN and RF showed a promising determination coefficient (R<sup>2</sup> ≥ 0.93) on elastic modulus prediction. Moreover, the results of the proposed models are consistent with the findings that the fibre and binder content have a significant effect on the elastic modulus.This research was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Engineering Structures (ISISE), under reference UIDB/04029/2020, the R&D Unit Chemical Process Engineering and Forest Products Research Centre (CIEPQPF) under reference UIDB/00102/2020, and under the project PTDC/ECICON/28382/2017.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoOwusu-Ansah, DominicTinoco, JoaquimCorreia, António A. S.Oliveira, Paulo J. Venda2022-08-262022-08-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/80703engOwusu-Ansah, D.; Tinoco, J.; Correia, A.A.S.; Oliveira, P.J.V. Prediction of Elastic Modulus for Fibre-Reinforced Soil-Cement Mixtures: A Machine Learning Approach. Appl. Sci. 2022, 12, 8540. https://doi.org/10.3390/app121785402076-341710.3390/app121785408540https://www.mdpi.com/2076-3417/12/17/8540info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:34:45Zoai:repositorium.sdum.uminho.pt:1822/80703Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:34:45Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
title Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
spellingShingle Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
Owusu-Ansah, Dominic
Soil-cement mixtures
Reinforced soil
Fibres
Machine learning
Elastic modulus
Science & Technology
title_short Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
title_full Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
title_fullStr Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
title_full_unstemmed Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
title_sort Prediction of elastic modulus for fibre-reinforced soil-cement mixtures: a machine learning approach
author Owusu-Ansah, Dominic
author_facet Owusu-Ansah, Dominic
Tinoco, Joaquim
Correia, António A. S.
Oliveira, Paulo J. Venda
author_role author
author2 Tinoco, Joaquim
Correia, António A. S.
Oliveira, Paulo J. Venda
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Owusu-Ansah, Dominic
Tinoco, Joaquim
Correia, António A. S.
Oliveira, Paulo J. Venda
dc.subject.por.fl_str_mv Soil-cement mixtures
Reinforced soil
Fibres
Machine learning
Elastic modulus
Science & Technology
topic Soil-cement mixtures
Reinforced soil
Fibres
Machine learning
Elastic modulus
Science & Technology
description Soil-cement mixtures reinforced with fibres are an alternative method of chemical soil stabilisation in which the inherent disadvantage of low or no tensile or flexural strength is overcome by incorporating fibres. These mixtures require a significant amount of time and resources for comprehensive laboratory characterisation, because a considerable number of parameters are involved. Therefore, the implementation of a Machine Learning (ML) approach provides an alternative way to predict the mechanical properties of soil-cement mixtures reinforced with fibres. In this study, Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF), and Multiple Regression (MR) algorithms were trained for predicting the elastic modulus of soil-cement mixtures reinforced with fibres. For ML algorithms training, a dataset of 121 records was used, comprising 16 properties of the composite material (soil, binder, and fibres). ANN and RF showed a promising determination coefficient (R<sup>2</sup> ≥ 0.93) on elastic modulus prediction. Moreover, the results of the proposed models are consistent with the findings that the fibre and binder content have a significant effect on the elastic modulus.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-26
2022-08-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/80703
url https://hdl.handle.net/1822/80703
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Owusu-Ansah, D.; Tinoco, J.; Correia, A.A.S.; Oliveira, P.J.V. Prediction of Elastic Modulus for Fibre-Reinforced Soil-Cement Mixtures: A Machine Learning Approach. Appl. Sci. 2022, 12, 8540. https://doi.org/10.3390/app12178540
2076-3417
10.3390/app12178540
8540
https://www.mdpi.com/2076-3417/12/17/8540
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545366219784192