Recommendation networks in human resource selection

Detalhes bibliográficos
Autor(a) principal: Fernandes, David
Data de Publicação: 2018
Outros Autores: Cavique, Luís
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.34627/rcc.v13i0.149
Resumo: One of the main challenges in a human resources recruitment process is the difficulty of analyzing objectively all candidates. This paper shows the application of networks of professional recommendations among peers in human resources recruitment processes. For this purpose we use the LinkedIn social network and in particular the recommendations made by a subset of professionals. We generate a network of recommendations by specialty, where the vertices are the professionals and the arcs are the recommendation relationships. Based on the network of recommendations we apply the algorithm PageRank to order of each professional by specialty. The analysis for several specialties is performed using multi-criteria evaluation, where the TOPSIS method is applied.
id RCAP_5145a0734b2324b96f8b27de8b3f02ed
oai_identifier_str oai:ojs2.journals.uab.pt:article/149
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Recommendation networks in human resource selectionRedes de Recomendações na Seleção de Recursos HumanosOne of the main challenges in a human resources recruitment process is the difficulty of analyzing objectively all candidates. This paper shows the application of networks of professional recommendations among peers in human resources recruitment processes. For this purpose we use the LinkedIn social network and in particular the recommendations made by a subset of professionals. We generate a network of recommendations by specialty, where the vertices are the professionals and the arcs are the recommendation relationships. Based on the network of recommendations we apply the algorithm PageRank to order of each professional by specialty. The analysis for several specialties is performed using multi-criteria evaluation, where the TOPSIS method is applied.Um dos principais desafios encontrados num processo de recrutamento de recursos humanos prende-se com a dificuldade prática de analisar de forma objetiva todos os candidatos. Neste trabalho mostra-se a aplicabilidade das redes de recomendações profissionais entre pares no âmbito de processos de recrutamento de recursos humanos. Para o efeito utilizamos a rede social LinkedIn e em particular as recomendações efetuadas por um conjunto de profissionais. Geramos uma rede de recomendações por especialidade, em que os vértices são os profissionais analisados e os arcos são as relações de recomendação. Sobre a rede de recomendações aplica-se o algoritmo PageRank para ordenar cada profissional por especialidade. A análise para várias especialidades é realizada através da avaliação multicritério, onde é aplicado o método TOPSIS.Universidade Aberta2018-12-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://doi.org/10.34627/rcc.v13i0.149oai:ojs2.journals.uab.pt:article/149Revista de Ciências da Computação; v. 13 (2018); 25-362182-18011646-633010.34627/rcc.v13i0reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://journals.uab.pt/index.php/rcc/article/view/149https://doi.org/10.34627/rcc.v13i0.149https://journals.uab.pt/index.php/rcc/article/view/149/108Direitos de Autor (c) 2018 Universidade Abertahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessFernandes, DavidCavique, Luís2022-10-25T11:31:56Zoai:ojs2.journals.uab.pt:article/149Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:14:01.456229Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Recommendation networks in human resource selection
Redes de Recomendações na Seleção de Recursos Humanos
title Recommendation networks in human resource selection
spellingShingle Recommendation networks in human resource selection
Fernandes, David
title_short Recommendation networks in human resource selection
title_full Recommendation networks in human resource selection
title_fullStr Recommendation networks in human resource selection
title_full_unstemmed Recommendation networks in human resource selection
title_sort Recommendation networks in human resource selection
author Fernandes, David
author_facet Fernandes, David
Cavique, Luís
author_role author
author2 Cavique, Luís
author2_role author
dc.contributor.author.fl_str_mv Fernandes, David
Cavique, Luís
description One of the main challenges in a human resources recruitment process is the difficulty of analyzing objectively all candidates. This paper shows the application of networks of professional recommendations among peers in human resources recruitment processes. For this purpose we use the LinkedIn social network and in particular the recommendations made by a subset of professionals. We generate a network of recommendations by specialty, where the vertices are the professionals and the arcs are the recommendation relationships. Based on the network of recommendations we apply the algorithm PageRank to order of each professional by specialty. The analysis for several specialties is performed using multi-criteria evaluation, where the TOPSIS method is applied.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.34627/rcc.v13i0.149
oai:ojs2.journals.uab.pt:article/149
url https://doi.org/10.34627/rcc.v13i0.149
identifier_str_mv oai:ojs2.journals.uab.pt:article/149
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://journals.uab.pt/index.php/rcc/article/view/149
https://doi.org/10.34627/rcc.v13i0.149
https://journals.uab.pt/index.php/rcc/article/view/149/108
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2018 Universidade Aberta
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2018 Universidade Aberta
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Aberta
publisher.none.fl_str_mv Universidade Aberta
dc.source.none.fl_str_mv Revista de Ciências da Computação; v. 13 (2018); 25-36
2182-1801
1646-6330
10.34627/rcc.v13i0
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130593779253248