Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation

Detalhes bibliográficos
Autor(a) principal: Arez, Maria
Data de Publicação: 2022
Outros Autores: Eckersley-Maslin, Melanie, Klobučar, Tajda, von Gilsa Lopes, João, Krueger, Felix, Mupo, Annalisa, Raposo, Ana Cláudia, Oxley, David, Mancino, Samantha, Gendrel, Anne Valerie, Bernardes de Jesus, Bruno, da Rocha, Simão Teixeira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/144427
Resumo: Funding Information: We would like to thank Sérgio de Almeida, Miguel Casanova and Inês Milagre for critical reading of the manuscript, and the members of the S.T.d.R.’s team for helpful discussions. We also thank Tânia Carvalho and Pedro Ruivo for their help in histological analysis; Judith Webster at Babraham Institute for LC-MS measurements; Bethan Hussey at Sanger Sequencing and Kristina Tabbada at Babraham Institute for assistance with high-throughput sequencing; and the Bioimaging unit as well as Andreia Santos, Rute Gonçalves and Mariana Fernandes of the Flow Cytometry Facility of Instituto de Medicina Molecular João Lobo Antunes for their services and assistance. Work in S.T.d.R.’s team was supported by Fundação para a Ciência e Tecnologia (FCT) Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal [IC&DT projects PTDC/BEX-BCM/2612/2014 and PTDC/BIA-MOL/29320/2017 as well as projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute from Bioengineering and Biosciences – iBB and LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB]; S.T.d.R. and A.-V.G. are supported by assistant research contracts from FCT/MCTES (CEECIND/01234/2017 and CEECIND/02085/2018, respectively); M.A and A.C.R. are supported, respectively, by SFRH/BD/151251/2021 and SFRH/BD/137099/2018 PhD fellowships from FCT/MCTES. J.V.G.L is supported by COVID/BD/152624/2022 from FCT/MCTES. MAE-M was supported by a BBSRC Discovery Fellowship (BB/T009713/1) and is now supported by a Snow Medical Fellowship. F.K. is supported by the Babraham Institute Strategic Core Funding and A.M. by BBSRC BBS/E/B/000C0421. B.B.J. work was funded by Fundação para a Ciência e Tecnologia (FCT), and FEDER, LISBOA-01-0145-FEDER-028534, project co-funded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa. T.K. is supported by Janko Jamnik Doctoral Scholarship from National Institute of Chemistry. Funding Information: We would like to thank Sérgio de Almeida, Miguel Casanova and Inês Milagre for critical reading of the manuscript, and the members of the S.T.d.R.’s team for helpful discussions. We also thank Tânia Carvalho and Pedro Ruivo for their help in histological analysis; Judith Webster at Babraham Institute for LC-MS measurements; Bethan Hussey at Sanger Sequencing and Kristina Tabbada at Babraham Institute for assistance with high-throughput sequencing; and the Bioimaging unit as well as Andreia Santos, Rute Gonçalves and Mariana Fernandes of the Flow Cytometry Facility of Instituto de Medicina Molecular João Lobo Antunes for their services and assistance. Work in S.T.d.R.’s team was supported by Fundação para a Ciência e Tecnologia (FCT) Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal [IC&DT projects PTDC/BEX-BCM/2612/2014 and PTDC/BIA-MOL/29320/2017 as well as projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute from Bioengineering and Biosciences – iBB and LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB]; S.T.d.R. and A.-V.G. are supported by assistant research contracts from FCT/MCTES (CEECIND/01234/2017 and CEECIND/02085/2018, respectively); M.A and A.C.R. are supported, respectively, by SFRH/BD/151251/2021 and SFRH/BD/137099/2018 PhD fellowships from FCT/MCTES. J.V.G.L is supported by COVID/BD/152624/2022 from FCT/MCTES. MAE-M was supported by a BBSRC Discovery Fellowship (BB/T009713/1) and is now supported by a Snow Medical Fellowship. F.K. is supported by the Babraham Institute Strategic Core Funding and A.M. by BBSRC BBS/E/B/000C0421. B.B.J. work was funded by Fundação para a Ciência e Tecnologia (FCT), and FEDER, LISBOA-01-0145-FEDER-028534, project co-funded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa. T.K. is supported by Janko Jamnik Doctoral Scholarship from National Institute of Chemistry. Publisher Copyright: © 2022, The Author(s).
id RCAP_51d19101204c52bd4a3f09447dc68951
oai_identifier_str oai:run.unl.pt:10362/144427
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulationChemistry(all)Biochemistry, Genetics and Molecular Biology(all)GeneralPhysics and Astronomy(all)Funding Information: We would like to thank Sérgio de Almeida, Miguel Casanova and Inês Milagre for critical reading of the manuscript, and the members of the S.T.d.R.’s team for helpful discussions. We also thank Tânia Carvalho and Pedro Ruivo for their help in histological analysis; Judith Webster at Babraham Institute for LC-MS measurements; Bethan Hussey at Sanger Sequencing and Kristina Tabbada at Babraham Institute for assistance with high-throughput sequencing; and the Bioimaging unit as well as Andreia Santos, Rute Gonçalves and Mariana Fernandes of the Flow Cytometry Facility of Instituto de Medicina Molecular João Lobo Antunes for their services and assistance. Work in S.T.d.R.’s team was supported by Fundação para a Ciência e Tecnologia (FCT) Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal [IC&DT projects PTDC/BEX-BCM/2612/2014 and PTDC/BIA-MOL/29320/2017 as well as projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute from Bioengineering and Biosciences – iBB and LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB]; S.T.d.R. and A.-V.G. are supported by assistant research contracts from FCT/MCTES (CEECIND/01234/2017 and CEECIND/02085/2018, respectively); M.A and A.C.R. are supported, respectively, by SFRH/BD/151251/2021 and SFRH/BD/137099/2018 PhD fellowships from FCT/MCTES. J.V.G.L is supported by COVID/BD/152624/2022 from FCT/MCTES. MAE-M was supported by a BBSRC Discovery Fellowship (BB/T009713/1) and is now supported by a Snow Medical Fellowship. F.K. is supported by the Babraham Institute Strategic Core Funding and A.M. by BBSRC BBS/E/B/000C0421. B.B.J. work was funded by Fundação para a Ciência e Tecnologia (FCT), and FEDER, LISBOA-01-0145-FEDER-028534, project co-funded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa. T.K. is supported by Janko Jamnik Doctoral Scholarship from National Institute of Chemistry. Funding Information: We would like to thank Sérgio de Almeida, Miguel Casanova and Inês Milagre for critical reading of the manuscript, and the members of the S.T.d.R.’s team for helpful discussions. We also thank Tânia Carvalho and Pedro Ruivo for their help in histological analysis; Judith Webster at Babraham Institute for LC-MS measurements; Bethan Hussey at Sanger Sequencing and Kristina Tabbada at Babraham Institute for assistance with high-throughput sequencing; and the Bioimaging unit as well as Andreia Santos, Rute Gonçalves and Mariana Fernandes of the Flow Cytometry Facility of Instituto de Medicina Molecular João Lobo Antunes for their services and assistance. Work in S.T.d.R.’s team was supported by Fundação para a Ciência e Tecnologia (FCT) Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal [IC&DT projects PTDC/BEX-BCM/2612/2014 and PTDC/BIA-MOL/29320/2017 as well as projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute from Bioengineering and Biosciences – iBB and LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB]; S.T.d.R. and A.-V.G. are supported by assistant research contracts from FCT/MCTES (CEECIND/01234/2017 and CEECIND/02085/2018, respectively); M.A and A.C.R. are supported, respectively, by SFRH/BD/151251/2021 and SFRH/BD/137099/2018 PhD fellowships from FCT/MCTES. J.V.G.L is supported by COVID/BD/152624/2022 from FCT/MCTES. MAE-M was supported by a BBSRC Discovery Fellowship (BB/T009713/1) and is now supported by a Snow Medical Fellowship. F.K. is supported by the Babraham Institute Strategic Core Funding and A.M. by BBSRC BBS/E/B/000C0421. B.B.J. work was funded by Fundação para a Ciência e Tecnologia (FCT), and FEDER, LISBOA-01-0145-FEDER-028534, project co-funded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa. T.K. is supported by Janko Jamnik Doctoral Scholarship from National Institute of Chemistry. Publisher Copyright: © 2022, The Author(s).Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNArez, MariaEckersley-Maslin, MelanieKlobučar, Tajdavon Gilsa Lopes, JoãoKrueger, FelixMupo, AnnalisaRaposo, Ana CláudiaOxley, DavidMancino, SamanthaGendrel, Anne ValerieBernardes de Jesus, Brunoda Rocha, Simão Teixeira2022-09-30T22:54:47Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/144427eng2041-1723PURE: 46824311https://doi.org/10.1038/s41467-022-33013-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:24:06Zoai:run.unl.pt:10362/144427Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:33.168184Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
title Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
spellingShingle Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
Arez, Maria
Chemistry(all)
Biochemistry, Genetics and Molecular Biology(all)
General
Physics and Astronomy(all)
title_short Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
title_full Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
title_fullStr Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
title_full_unstemmed Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
title_sort Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
author Arez, Maria
author_facet Arez, Maria
Eckersley-Maslin, Melanie
Klobučar, Tajda
von Gilsa Lopes, João
Krueger, Felix
Mupo, Annalisa
Raposo, Ana Cláudia
Oxley, David
Mancino, Samantha
Gendrel, Anne Valerie
Bernardes de Jesus, Bruno
da Rocha, Simão Teixeira
author_role author
author2 Eckersley-Maslin, Melanie
Klobučar, Tajda
von Gilsa Lopes, João
Krueger, Felix
Mupo, Annalisa
Raposo, Ana Cláudia
Oxley, David
Mancino, Samantha
Gendrel, Anne Valerie
Bernardes de Jesus, Bruno
da Rocha, Simão Teixeira
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
RUN
dc.contributor.author.fl_str_mv Arez, Maria
Eckersley-Maslin, Melanie
Klobučar, Tajda
von Gilsa Lopes, João
Krueger, Felix
Mupo, Annalisa
Raposo, Ana Cláudia
Oxley, David
Mancino, Samantha
Gendrel, Anne Valerie
Bernardes de Jesus, Bruno
da Rocha, Simão Teixeira
dc.subject.por.fl_str_mv Chemistry(all)
Biochemistry, Genetics and Molecular Biology(all)
General
Physics and Astronomy(all)
topic Chemistry(all)
Biochemistry, Genetics and Molecular Biology(all)
General
Physics and Astronomy(all)
description Funding Information: We would like to thank Sérgio de Almeida, Miguel Casanova and Inês Milagre for critical reading of the manuscript, and the members of the S.T.d.R.’s team for helpful discussions. We also thank Tânia Carvalho and Pedro Ruivo for their help in histological analysis; Judith Webster at Babraham Institute for LC-MS measurements; Bethan Hussey at Sanger Sequencing and Kristina Tabbada at Babraham Institute for assistance with high-throughput sequencing; and the Bioimaging unit as well as Andreia Santos, Rute Gonçalves and Mariana Fernandes of the Flow Cytometry Facility of Instituto de Medicina Molecular João Lobo Antunes for their services and assistance. Work in S.T.d.R.’s team was supported by Fundação para a Ciência e Tecnologia (FCT) Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal [IC&DT projects PTDC/BEX-BCM/2612/2014 and PTDC/BIA-MOL/29320/2017 as well as projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute from Bioengineering and Biosciences – iBB and LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB]; S.T.d.R. and A.-V.G. are supported by assistant research contracts from FCT/MCTES (CEECIND/01234/2017 and CEECIND/02085/2018, respectively); M.A and A.C.R. are supported, respectively, by SFRH/BD/151251/2021 and SFRH/BD/137099/2018 PhD fellowships from FCT/MCTES. J.V.G.L is supported by COVID/BD/152624/2022 from FCT/MCTES. MAE-M was supported by a BBSRC Discovery Fellowship (BB/T009713/1) and is now supported by a Snow Medical Fellowship. F.K. is supported by the Babraham Institute Strategic Core Funding and A.M. by BBSRC BBS/E/B/000C0421. B.B.J. work was funded by Fundação para a Ciência e Tecnologia (FCT), and FEDER, LISBOA-01-0145-FEDER-028534, project co-funded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa. T.K. is supported by Janko Jamnik Doctoral Scholarship from National Institute of Chemistry. Funding Information: We would like to thank Sérgio de Almeida, Miguel Casanova and Inês Milagre for critical reading of the manuscript, and the members of the S.T.d.R.’s team for helpful discussions. We also thank Tânia Carvalho and Pedro Ruivo for their help in histological analysis; Judith Webster at Babraham Institute for LC-MS measurements; Bethan Hussey at Sanger Sequencing and Kristina Tabbada at Babraham Institute for assistance with high-throughput sequencing; and the Bioimaging unit as well as Andreia Santos, Rute Gonçalves and Mariana Fernandes of the Flow Cytometry Facility of Instituto de Medicina Molecular João Lobo Antunes for their services and assistance. Work in S.T.d.R.’s team was supported by Fundação para a Ciência e Tecnologia (FCT) Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal [IC&DT projects PTDC/BEX-BCM/2612/2014 and PTDC/BIA-MOL/29320/2017 as well as projects UIDB/04565/2020 and UIDP/04565/2020 of the Research Unit Institute from Bioengineering and Biosciences – iBB and LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB]; S.T.d.R. and A.-V.G. are supported by assistant research contracts from FCT/MCTES (CEECIND/01234/2017 and CEECIND/02085/2018, respectively); M.A and A.C.R. are supported, respectively, by SFRH/BD/151251/2021 and SFRH/BD/137099/2018 PhD fellowships from FCT/MCTES. J.V.G.L is supported by COVID/BD/152624/2022 from FCT/MCTES. MAE-M was supported by a BBSRC Discovery Fellowship (BB/T009713/1) and is now supported by a Snow Medical Fellowship. F.K. is supported by the Babraham Institute Strategic Core Funding and A.M. by BBSRC BBS/E/B/000C0421. B.B.J. work was funded by Fundação para a Ciência e Tecnologia (FCT), and FEDER, LISBOA-01-0145-FEDER-028534, project co-funded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa. T.K. is supported by Janko Jamnik Doctoral Scholarship from National Institute of Chemistry. Publisher Copyright: © 2022, The Author(s).
publishDate 2022
dc.date.none.fl_str_mv 2022-09-30T22:54:47Z
2022-12
2022-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/144427
url http://hdl.handle.net/10362/144427
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2041-1723
PURE: 46824311
https://doi.org/10.1038/s41467-022-33013-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138108718972928