Combined effect of pressure and temperature for yogurt production
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/27923 |
Resumo: | Fermentation under non-conventional conditions has gained prominence in the last years, due to the possible process improvements. Fermentation under sub-lethal pressures is one of such cases, and may bring novel characteristics and features to fermentative processes and products. In this work, the effect of both pressure (10–100 MPa) and temperature (25–50 °C) on yogurt production fermentation kinetics was studied, as a case-study. Product formation and substrate consumption were evaluated over fermentation time and the profiles were highly dependent on the fermentation conditions used. For instance, the increase of pressure slowed down yogurt fermentation, but fermentative profiles similar to atmospheric pressure (0.1 MPa) were obtained at 10 MPa at almost all temperatures tested. Regarding temperature, higher fermentative rates were achieved at 43 °C for all pressures tested. Moreover, the inhibitory effect of pressure increased when temperature decreased, with complete inhibition of fermentation occurring at 50 MPa for 25–35 °C, contrasting to 43 °C where inhibition occurred only at 100 MPa. Therefore, an antagonistic effect seems to occur, since yogurt fermentation was slowed down by pressure increasing, on one hand, and by temperature decreasing, on the other hand. Additionally, some kinetic parameters were calculated and fermentation at 43 °C presented the best results for yogurt production, with lower fermentation times and higher lactic acid productivities. Interestingly, fermentation at 10 MPa/43 °C presented the optimal conditions, with improved yield and lactic acid production efficiency, when compared to fermentation at 0.1 MPa (efficiency of 75% at 10 MPa, against 40% at 0.1 MPa). As the authors are aware, this work gives the first insights about the simultaneous effect of pressure and temperature variation on a microbial fermentation process, which can be combined to modulate the metabolic activity of microorganisms during fermentation in order to improve the fermentative yields and productivities of the desired product. |
id |
RCAP_522223bce9f160c302608328aef6342c |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/27923 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Combined effect of pressure and temperature for yogurt productionFermentationYogurtLactic acidHigh pressureTemperatureStressFermentation under non-conventional conditions has gained prominence in the last years, due to the possible process improvements. Fermentation under sub-lethal pressures is one of such cases, and may bring novel characteristics and features to fermentative processes and products. In this work, the effect of both pressure (10–100 MPa) and temperature (25–50 °C) on yogurt production fermentation kinetics was studied, as a case-study. Product formation and substrate consumption were evaluated over fermentation time and the profiles were highly dependent on the fermentation conditions used. For instance, the increase of pressure slowed down yogurt fermentation, but fermentative profiles similar to atmospheric pressure (0.1 MPa) were obtained at 10 MPa at almost all temperatures tested. Regarding temperature, higher fermentative rates were achieved at 43 °C for all pressures tested. Moreover, the inhibitory effect of pressure increased when temperature decreased, with complete inhibition of fermentation occurring at 50 MPa for 25–35 °C, contrasting to 43 °C where inhibition occurred only at 100 MPa. Therefore, an antagonistic effect seems to occur, since yogurt fermentation was slowed down by pressure increasing, on one hand, and by temperature decreasing, on the other hand. Additionally, some kinetic parameters were calculated and fermentation at 43 °C presented the best results for yogurt production, with lower fermentation times and higher lactic acid productivities. Interestingly, fermentation at 10 MPa/43 °C presented the optimal conditions, with improved yield and lactic acid production efficiency, when compared to fermentation at 0.1 MPa (efficiency of 75% at 10 MPa, against 40% at 0.1 MPa). As the authors are aware, this work gives the first insights about the simultaneous effect of pressure and temperature variation on a microbial fermentation process, which can be combined to modulate the metabolic activity of microorganisms during fermentation in order to improve the fermentative yields and productivities of the desired product.ElsevierVeritati - Repositório Institucional da Universidade Católica PortuguesaLopes, Rita P.Mota, Maria J.Sousa, SérgioGomes, Ana M.Delgadillo, IvonneSaraiva, Jorge A.2019-07-10T17:31:48Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/27923engLopes, R. P., Mota, M. J., Sousa, S., Gomes, A. M., Delgadillo, I., & Saraiva, J. A. (2019). Combined effect of pressure and temperature for yogurt production. Food Research International, 122, 222–229. https://doi.org/10.1016/j.foodres.2019.04.0100963-996910.1016/j.foodres.2019.04.0101873-71458506461564231229075000473379200025info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-03T01:41:54Zoai:repositorio.ucp.pt:10400.14/27923Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:22:21.680252Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Combined effect of pressure and temperature for yogurt production |
title |
Combined effect of pressure and temperature for yogurt production |
spellingShingle |
Combined effect of pressure and temperature for yogurt production Lopes, Rita P. Fermentation Yogurt Lactic acid High pressure Temperature Stress |
title_short |
Combined effect of pressure and temperature for yogurt production |
title_full |
Combined effect of pressure and temperature for yogurt production |
title_fullStr |
Combined effect of pressure and temperature for yogurt production |
title_full_unstemmed |
Combined effect of pressure and temperature for yogurt production |
title_sort |
Combined effect of pressure and temperature for yogurt production |
author |
Lopes, Rita P. |
author_facet |
Lopes, Rita P. Mota, Maria J. Sousa, Sérgio Gomes, Ana M. Delgadillo, Ivonne Saraiva, Jorge A. |
author_role |
author |
author2 |
Mota, Maria J. Sousa, Sérgio Gomes, Ana M. Delgadillo, Ivonne Saraiva, Jorge A. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Lopes, Rita P. Mota, Maria J. Sousa, Sérgio Gomes, Ana M. Delgadillo, Ivonne Saraiva, Jorge A. |
dc.subject.por.fl_str_mv |
Fermentation Yogurt Lactic acid High pressure Temperature Stress |
topic |
Fermentation Yogurt Lactic acid High pressure Temperature Stress |
description |
Fermentation under non-conventional conditions has gained prominence in the last years, due to the possible process improvements. Fermentation under sub-lethal pressures is one of such cases, and may bring novel characteristics and features to fermentative processes and products. In this work, the effect of both pressure (10–100 MPa) and temperature (25–50 °C) on yogurt production fermentation kinetics was studied, as a case-study. Product formation and substrate consumption were evaluated over fermentation time and the profiles were highly dependent on the fermentation conditions used. For instance, the increase of pressure slowed down yogurt fermentation, but fermentative profiles similar to atmospheric pressure (0.1 MPa) were obtained at 10 MPa at almost all temperatures tested. Regarding temperature, higher fermentative rates were achieved at 43 °C for all pressures tested. Moreover, the inhibitory effect of pressure increased when temperature decreased, with complete inhibition of fermentation occurring at 50 MPa for 25–35 °C, contrasting to 43 °C where inhibition occurred only at 100 MPa. Therefore, an antagonistic effect seems to occur, since yogurt fermentation was slowed down by pressure increasing, on one hand, and by temperature decreasing, on the other hand. Additionally, some kinetic parameters were calculated and fermentation at 43 °C presented the best results for yogurt production, with lower fermentation times and higher lactic acid productivities. Interestingly, fermentation at 10 MPa/43 °C presented the optimal conditions, with improved yield and lactic acid production efficiency, when compared to fermentation at 0.1 MPa (efficiency of 75% at 10 MPa, against 40% at 0.1 MPa). As the authors are aware, this work gives the first insights about the simultaneous effect of pressure and temperature variation on a microbial fermentation process, which can be combined to modulate the metabolic activity of microorganisms during fermentation in order to improve the fermentative yields and productivities of the desired product. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-10T17:31:48Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/27923 |
url |
http://hdl.handle.net/10400.14/27923 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lopes, R. P., Mota, M. J., Sousa, S., Gomes, A. M., Delgadillo, I., & Saraiva, J. A. (2019). Combined effect of pressure and temperature for yogurt production. Food Research International, 122, 222–229. https://doi.org/10.1016/j.foodres.2019.04.010 0963-9969 10.1016/j.foodres.2019.04.010 1873-7145 85064615642 31229075 000473379200025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131928794759168 |