A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/158734 |
Resumo: | He, R., Small, M. J., Scott, I. J., Olanrinre, M., Sandoval-Reyes, M., & Ferrão, P. (2023). A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems. Environmental Science & Technology, A-J. https://doi.org/10.1021/acs.est.3c04214---This research is supported by the Mao Yisheng Fellowship of Carnegie Mellon University to Rui He and through the CMU-Portugal project “Bee2Waste Crypto” (IDT-COP 45933). I.S. acknowledges the financial support provided by Fundação para a Ciência e a Tecnologia (FCT) Portugal under Project UIDB/0415s2/2020 - Centro de Investigação em Gestão de Informação (MagIC). The authors thank Dr. Scott Matthews for reviewing and editing this paper. |
id |
RCAP_534428e89dbd2bd1911e6aefea21e554 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/158734 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systemswaste managementdecision supportmachine learninghybrid neural networkphysics-informed MLinterpretable MLChemistry(all)Environmental ChemistrySDG 9 - Industry, Innovation, and InfrastructureSDG 11 - Sustainable Cities and CommunitiesSDG 12 - Responsible Consumption and ProductionHe, R., Small, M. J., Scott, I. J., Olanrinre, M., Sandoval-Reyes, M., & Ferrão, P. (2023). A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems. Environmental Science & Technology, A-J. https://doi.org/10.1021/acs.est.3c04214---This research is supported by the Mao Yisheng Fellowship of Carnegie Mellon University to Rui He and through the CMU-Portugal project “Bee2Waste Crypto” (IDT-COP 45933). I.S. acknowledges the financial support provided by Fundação para a Ciência e a Tecnologia (FCT) Portugal under Project UIDB/0415s2/2020 - Centro de Investigação em Gestão de Informação (MagIC). The authors thank Dr. Scott Matthews for reviewing and editing this paper.Sustainability challenges, such as solid waste management, are usually scientifically complex and data scarce, which makes them not amenable to science-based analytical forms or data-intensive learning paradigms. Deep integration between data science and sustainability science in highly complementary manners offers new opportunities for tackling these conundrums. This study develops a novel hybrid neural network (HNN) model that imposes the holistic decision-making context of solid waste management systems (SWMS) on a traditional neural network (NN) architecture. Equipped with adaptable hybridization designs of hand-crafted model structure, constrained or predetermined parameters, and a customized loss function, the HNN model is capable of learning various technical, economic, and social aspects of SWMS from a small and heterogeneous data set. In comparison, the versatile HNN model not only outperforms traditional NN models in convergence rates, which leads to a 22% lower mean testing error of 0.20, but also offers superior interpretability. The HNN model is capable of generating insights into the enabling factors, policy interventions, and driving forces of SWMS, laying a solid foundation for data-driven decision making.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNHe, RuiSmall, Mitchell J.Scott, Ian J.Olarinre, MotolaniSandoval-Reyes, MexitliFerrão, Paulo2023-11-212024-09-30T00:00:00Z2023-11-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10application/pdfhttp://hdl.handle.net/10362/158734eng0013-936XPURE: 73075499https://doi.org/10.1021/acs.est.3c04214info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:41:16Zoai:run.unl.pt:10362/158734Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:17.240489Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
title |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
spellingShingle |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems He, Rui waste management decision support machine learning hybrid neural network physics-informed ML interpretable ML Chemistry(all) Environmental Chemistry SDG 9 - Industry, Innovation, and Infrastructure SDG 11 - Sustainable Cities and Communities SDG 12 - Responsible Consumption and Production |
title_short |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
title_full |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
title_fullStr |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
title_full_unstemmed |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
title_sort |
A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems |
author |
He, Rui |
author_facet |
He, Rui Small, Mitchell J. Scott, Ian J. Olarinre, Motolani Sandoval-Reyes, Mexitli Ferrão, Paulo |
author_role |
author |
author2 |
Small, Mitchell J. Scott, Ian J. Olarinre, Motolani Sandoval-Reyes, Mexitli Ferrão, Paulo |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
He, Rui Small, Mitchell J. Scott, Ian J. Olarinre, Motolani Sandoval-Reyes, Mexitli Ferrão, Paulo |
dc.subject.por.fl_str_mv |
waste management decision support machine learning hybrid neural network physics-informed ML interpretable ML Chemistry(all) Environmental Chemistry SDG 9 - Industry, Innovation, and Infrastructure SDG 11 - Sustainable Cities and Communities SDG 12 - Responsible Consumption and Production |
topic |
waste management decision support machine learning hybrid neural network physics-informed ML interpretable ML Chemistry(all) Environmental Chemistry SDG 9 - Industry, Innovation, and Infrastructure SDG 11 - Sustainable Cities and Communities SDG 12 - Responsible Consumption and Production |
description |
He, R., Small, M. J., Scott, I. J., Olanrinre, M., Sandoval-Reyes, M., & Ferrão, P. (2023). A Novel Domain Knowledge-Informed Machine Learning Approach for Modeling Solid Waste Management Systems. Environmental Science & Technology, A-J. https://doi.org/10.1021/acs.est.3c04214---This research is supported by the Mao Yisheng Fellowship of Carnegie Mellon University to Rui He and through the CMU-Portugal project “Bee2Waste Crypto” (IDT-COP 45933). I.S. acknowledges the financial support provided by Fundação para a Ciência e a Tecnologia (FCT) Portugal under Project UIDB/0415s2/2020 - Centro de Investigação em Gestão de Informação (MagIC). The authors thank Dr. Scott Matthews for reviewing and editing this paper. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-21 2023-11-21T00:00:00Z 2024-09-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/158734 |
url |
http://hdl.handle.net/10362/158734 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0013-936X PURE: 73075499 https://doi.org/10.1021/acs.est.3c04214 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
10 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138156045402112 |