A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification

Detalhes bibliográficos
Autor(a) principal: Bandyopadhyay, Tathagata
Data de Publicação: 2019
Outros Autores: Mitra, Shyamali, Mitra, Sreetama, Nibaran, Das, Rato, Luis, Naskar, Mrinal
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/27558
https://doi.org/10.1007/978-981-13-1280-9_29
Resumo: This paper describes a novel fast algorithm for automatic segmentation of islets of Langerhans and β-cell region from pancreas histological images for automatic identification of glucose intolerance. Here LUV color space and con- nected component analysis are used on 134 images among which 56 are of nor- mal and rest 78 are of pre-diabetic type. The paper also talks about a supervised learning approach for classifying the images based on their morphological fea- tures. In the present work we have introduced a modern classifier weighted ELM (Extreme Learning Machine) for Prediabetes identification. Performances of weighted ELM are comparable with all the present day’s robust classifiers such as Support Vector Machines (SVM), Multilayer Perceptron (MLP) etc. We have also compared the result with traditional ELM and observed better performance in the present skewed dataset with substantial improvement in training time.
id RCAP_5460fb337cbb8e555cae4f49cd18ae25
oai_identifier_str oai:dspace.uevora.pt:10174/27558
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance IdentificationAutomatic SegmentationHistological imageIslets of Langerhansβ-cellDiabetes,Computerized Diagnostic SystemExtreme Learning MachineThis paper describes a novel fast algorithm for automatic segmentation of islets of Langerhans and β-cell region from pancreas histological images for automatic identification of glucose intolerance. Here LUV color space and con- nected component analysis are used on 134 images among which 56 are of nor- mal and rest 78 are of pre-diabetic type. The paper also talks about a supervised learning approach for classifying the images based on their morphological fea- tures. In the present work we have introduced a modern classifier weighted ELM (Extreme Learning Machine) for Prediabetes identification. Performances of weighted ELM are comparable with all the present day’s robust classifiers such as Support Vector Machines (SVM), Multilayer Perceptron (MLP) etc. We have also compared the result with traditional ELM and observed better performance in the present skewed dataset with substantial improvement in training time.Springer Singapore2020-03-02T11:47:50Z2020-03-022019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/27558https://doi.org/10.1007/978-981-13-1280-9_29http://hdl.handle.net/10174/27558https://doi.org/10.1007/978-981-13-1280-9_29porBandyopadhyay T., Mitra S., Mitra S., Das N., Rato L., Naskar M.K., A Fast Algorithm for Automatic Segmentation of Pancreas Histological Images for GlucoseIntolerance Identification. In: Kalita J., Balas V., Borah S., Pradhan R. (eds) Recent Developments in Machine Learning and Data Analytics. Advances in Intelligent Systems and Computing IC3, vol 740. Springer, Singapore, 2019.ndndndndlmr@uevora.ptnd498Bandyopadhyay, TathagataMitra, ShyamaliMitra, SreetamaNibaran, DasRato, LuisNaskar, Mrinalinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:23:13Zoai:dspace.uevora.pt:10174/27558Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:17:39.229863Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
title A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
spellingShingle A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
Bandyopadhyay, Tathagata
Automatic Segmentation
Histological image
Islets of Langerhans
β-cell
Diabetes,
Computerized Diagnostic System
Extreme Learning Machine
title_short A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
title_full A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
title_fullStr A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
title_full_unstemmed A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
title_sort A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
author Bandyopadhyay, Tathagata
author_facet Bandyopadhyay, Tathagata
Mitra, Shyamali
Mitra, Sreetama
Nibaran, Das
Rato, Luis
Naskar, Mrinal
author_role author
author2 Mitra, Shyamali
Mitra, Sreetama
Nibaran, Das
Rato, Luis
Naskar, Mrinal
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Bandyopadhyay, Tathagata
Mitra, Shyamali
Mitra, Sreetama
Nibaran, Das
Rato, Luis
Naskar, Mrinal
dc.subject.por.fl_str_mv Automatic Segmentation
Histological image
Islets of Langerhans
β-cell
Diabetes,
Computerized Diagnostic System
Extreme Learning Machine
topic Automatic Segmentation
Histological image
Islets of Langerhans
β-cell
Diabetes,
Computerized Diagnostic System
Extreme Learning Machine
description This paper describes a novel fast algorithm for automatic segmentation of islets of Langerhans and β-cell region from pancreas histological images for automatic identification of glucose intolerance. Here LUV color space and con- nected component analysis are used on 134 images among which 56 are of nor- mal and rest 78 are of pre-diabetic type. The paper also talks about a supervised learning approach for classifying the images based on their morphological fea- tures. In the present work we have introduced a modern classifier weighted ELM (Extreme Learning Machine) for Prediabetes identification. Performances of weighted ELM are comparable with all the present day’s robust classifiers such as Support Vector Machines (SVM), Multilayer Perceptron (MLP) etc. We have also compared the result with traditional ELM and observed better performance in the present skewed dataset with substantial improvement in training time.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01T00:00:00Z
2020-03-02T11:47:50Z
2020-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/27558
https://doi.org/10.1007/978-981-13-1280-9_29
http://hdl.handle.net/10174/27558
https://doi.org/10.1007/978-981-13-1280-9_29
url http://hdl.handle.net/10174/27558
https://doi.org/10.1007/978-981-13-1280-9_29
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Bandyopadhyay T., Mitra S., Mitra S., Das N., Rato L., Naskar M.K., A Fast Algorithm for Automatic Segmentation of Pancreas Histological Images for GlucoseIntolerance Identification. In: Kalita J., Balas V., Borah S., Pradhan R. (eds) Recent Developments in Machine Learning and Data Analytics. Advances in Intelligent Systems and Computing IC3, vol 740. Springer, Singapore, 2019.
nd
nd
nd
nd
lmr@uevora.pt
nd
498
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Singapore
publisher.none.fl_str_mv Springer Singapore
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136658582405120