A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/27558 https://doi.org/10.1007/978-981-13-1280-9_29 |
Resumo: | This paper describes a novel fast algorithm for automatic segmentation of islets of Langerhans and β-cell region from pancreas histological images for automatic identification of glucose intolerance. Here LUV color space and con- nected component analysis are used on 134 images among which 56 are of nor- mal and rest 78 are of pre-diabetic type. The paper also talks about a supervised learning approach for classifying the images based on their morphological fea- tures. In the present work we have introduced a modern classifier weighted ELM (Extreme Learning Machine) for Prediabetes identification. Performances of weighted ELM are comparable with all the present day’s robust classifiers such as Support Vector Machines (SVM), Multilayer Perceptron (MLP) etc. We have also compared the result with traditional ELM and observed better performance in the present skewed dataset with substantial improvement in training time. |
id |
RCAP_5460fb337cbb8e555cae4f49cd18ae25 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/27558 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance IdentificationAutomatic SegmentationHistological imageIslets of Langerhansβ-cellDiabetes,Computerized Diagnostic SystemExtreme Learning MachineThis paper describes a novel fast algorithm for automatic segmentation of islets of Langerhans and β-cell region from pancreas histological images for automatic identification of glucose intolerance. Here LUV color space and con- nected component analysis are used on 134 images among which 56 are of nor- mal and rest 78 are of pre-diabetic type. The paper also talks about a supervised learning approach for classifying the images based on their morphological fea- tures. In the present work we have introduced a modern classifier weighted ELM (Extreme Learning Machine) for Prediabetes identification. Performances of weighted ELM are comparable with all the present day’s robust classifiers such as Support Vector Machines (SVM), Multilayer Perceptron (MLP) etc. We have also compared the result with traditional ELM and observed better performance in the present skewed dataset with substantial improvement in training time.Springer Singapore2020-03-02T11:47:50Z2020-03-022019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/27558https://doi.org/10.1007/978-981-13-1280-9_29http://hdl.handle.net/10174/27558https://doi.org/10.1007/978-981-13-1280-9_29porBandyopadhyay T., Mitra S., Mitra S., Das N., Rato L., Naskar M.K., A Fast Algorithm for Automatic Segmentation of Pancreas Histological Images for GlucoseIntolerance Identification. In: Kalita J., Balas V., Borah S., Pradhan R. (eds) Recent Developments in Machine Learning and Data Analytics. Advances in Intelligent Systems and Computing IC3, vol 740. Springer, Singapore, 2019.ndndndndlmr@uevora.ptnd498Bandyopadhyay, TathagataMitra, ShyamaliMitra, SreetamaNibaran, DasRato, LuisNaskar, Mrinalinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:23:13Zoai:dspace.uevora.pt:10174/27558Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:17:39.229863Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
title |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
spellingShingle |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification Bandyopadhyay, Tathagata Automatic Segmentation Histological image Islets of Langerhans β-cell Diabetes, Computerized Diagnostic System Extreme Learning Machine |
title_short |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
title_full |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
title_fullStr |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
title_full_unstemmed |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
title_sort |
A fast Algorithm for Automatic Segmentation of Pancreas Histological Images for Glucose Intolerance Identification |
author |
Bandyopadhyay, Tathagata |
author_facet |
Bandyopadhyay, Tathagata Mitra, Shyamali Mitra, Sreetama Nibaran, Das Rato, Luis Naskar, Mrinal |
author_role |
author |
author2 |
Mitra, Shyamali Mitra, Sreetama Nibaran, Das Rato, Luis Naskar, Mrinal |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Bandyopadhyay, Tathagata Mitra, Shyamali Mitra, Sreetama Nibaran, Das Rato, Luis Naskar, Mrinal |
dc.subject.por.fl_str_mv |
Automatic Segmentation Histological image Islets of Langerhans β-cell Diabetes, Computerized Diagnostic System Extreme Learning Machine |
topic |
Automatic Segmentation Histological image Islets of Langerhans β-cell Diabetes, Computerized Diagnostic System Extreme Learning Machine |
description |
This paper describes a novel fast algorithm for automatic segmentation of islets of Langerhans and β-cell region from pancreas histological images for automatic identification of glucose intolerance. Here LUV color space and con- nected component analysis are used on 134 images among which 56 are of nor- mal and rest 78 are of pre-diabetic type. The paper also talks about a supervised learning approach for classifying the images based on their morphological fea- tures. In the present work we have introduced a modern classifier weighted ELM (Extreme Learning Machine) for Prediabetes identification. Performances of weighted ELM are comparable with all the present day’s robust classifiers such as Support Vector Machines (SVM), Multilayer Perceptron (MLP) etc. We have also compared the result with traditional ELM and observed better performance in the present skewed dataset with substantial improvement in training time. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2020-03-02T11:47:50Z 2020-03-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/27558 https://doi.org/10.1007/978-981-13-1280-9_29 http://hdl.handle.net/10174/27558 https://doi.org/10.1007/978-981-13-1280-9_29 |
url |
http://hdl.handle.net/10174/27558 https://doi.org/10.1007/978-981-13-1280-9_29 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Bandyopadhyay T., Mitra S., Mitra S., Das N., Rato L., Naskar M.K., A Fast Algorithm for Automatic Segmentation of Pancreas Histological Images for GlucoseIntolerance Identification. In: Kalita J., Balas V., Borah S., Pradhan R. (eds) Recent Developments in Machine Learning and Data Analytics. Advances in Intelligent Systems and Computing IC3, vol 740. Springer, Singapore, 2019. nd nd nd nd lmr@uevora.pt nd 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Singapore |
publisher.none.fl_str_mv |
Springer Singapore |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136658582405120 |