Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking

Detalhes bibliográficos
Autor(a) principal: Henriques, Gisela
Data de Publicação: 2013
Outros Autores: Martinelli, Axel, Rodrigues, Louise, Modrzynska, Katarzyna, Fawcett, Richard, Houston, Douglas R., Borges, Sofia T., D'Alessandro, Umberto, Tinto, Halidou, Karema, Corine, Hunt, Paul, Cravo, Pedro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/117026
Resumo: Background: The control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that artemisinin resistance has already appeared in natural infections. Understanding the mechanisms of resistance would help to prolong the effective lifetime of these drugs. Genetic markers of resistance are therefore required urgently. Previously, a mutation in a de-ubiquitinating enzyme was shown to confer artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi. Methods. Here, for a mutant P. chabaudi malaria parasite and its immediate progenitor, the in vivo artemisinin resistance phenotypes and the mutations arising using Illumina whole-genome re-sequencing were compared. Results: An increased artemisinin resistance phenotype is accompanied by one non-synonymous substitution. The mutated gene encodes the μ-chain of the AP2 adaptor complex, a component of the endocytic machinery. Homology models indicate that the mutated residue interacts with a cargo recognition sequence. In natural infections of the human malaria parasite P. falciparum, 12 polymorphisms (nine SNPs and three indels) were identified in the orthologous gene. Conclusion: An increased artemisinin-resistant phenotype occurs along with a mutation in a functional element of the AP2 adaptor protein complex. This suggests that endocytosis and trafficking of membrane proteins may be involved, generating new insights into possible mechanisms of resistance. The genotypes of this adaptor protein can be evaluated for its role in artemisinin responses in human infections of P. falciparum.
id RCAP_55d02f2bf68e9465269b4137b4487c04
oai_identifier_str oai:run.unl.pt:10362/117026
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein traffickingArtemisininDrug resistanceEndocytic machineryGenomicsMalariaMutationPlasmodium chabaudiParasitologyInfectious DiseasesGeneticsSDG 3 - Good Health and Well-beingBackground: The control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that artemisinin resistance has already appeared in natural infections. Understanding the mechanisms of resistance would help to prolong the effective lifetime of these drugs. Genetic markers of resistance are therefore required urgently. Previously, a mutation in a de-ubiquitinating enzyme was shown to confer artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi. Methods. Here, for a mutant P. chabaudi malaria parasite and its immediate progenitor, the in vivo artemisinin resistance phenotypes and the mutations arising using Illumina whole-genome re-sequencing were compared. Results: An increased artemisinin resistance phenotype is accompanied by one non-synonymous substitution. The mutated gene encodes the μ-chain of the AP2 adaptor complex, a component of the endocytic machinery. Homology models indicate that the mutated residue interacts with a cargo recognition sequence. In natural infections of the human malaria parasite P. falciparum, 12 polymorphisms (nine SNPs and three indels) were identified in the orthologous gene. Conclusion: An increased artemisinin-resistant phenotype occurs along with a mutation in a functional element of the AP2 adaptor protein complex. This suggests that endocytosis and trafficking of membrane proteins may be involved, generating new insights into possible mechanisms of resistance. The genotypes of this adaptor protein can be evaluated for its role in artemisinin responses in human infections of P. falciparum.Instituto de Higiene e Medicina Tropical (IHMT)Centro de Malária e outras Doenças Tropicais (CMDT)RUNHenriques, GiselaMartinelli, AxelRodrigues, LouiseModrzynska, KatarzynaFawcett, RichardHouston, Douglas R.Borges, Sofia T.D'Alessandro, UmbertoTinto, HalidouKarema, CorineHunt, PaulCravo, Pedro2021-05-04T22:55:15Z2013-04-092013-04-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/117026eng1475-2875PURE: 26055525https://doi.org/10.1186/1475-2875-12-118info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:59:58Zoai:run.unl.pt:10362/117026Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:25.883453Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
title Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
spellingShingle Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
Henriques, Gisela
Artemisinin
Drug resistance
Endocytic machinery
Genomics
Malaria
Mutation
Plasmodium chabaudi
Parasitology
Infectious Diseases
Genetics
SDG 3 - Good Health and Well-being
title_short Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
title_full Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
title_fullStr Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
title_full_unstemmed Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
title_sort Artemisinin resistance in rodent malaria - Mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking
author Henriques, Gisela
author_facet Henriques, Gisela
Martinelli, Axel
Rodrigues, Louise
Modrzynska, Katarzyna
Fawcett, Richard
Houston, Douglas R.
Borges, Sofia T.
D'Alessandro, Umberto
Tinto, Halidou
Karema, Corine
Hunt, Paul
Cravo, Pedro
author_role author
author2 Martinelli, Axel
Rodrigues, Louise
Modrzynska, Katarzyna
Fawcett, Richard
Houston, Douglas R.
Borges, Sofia T.
D'Alessandro, Umberto
Tinto, Halidou
Karema, Corine
Hunt, Paul
Cravo, Pedro
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Instituto de Higiene e Medicina Tropical (IHMT)
Centro de Malária e outras Doenças Tropicais (CMDT)
RUN
dc.contributor.author.fl_str_mv Henriques, Gisela
Martinelli, Axel
Rodrigues, Louise
Modrzynska, Katarzyna
Fawcett, Richard
Houston, Douglas R.
Borges, Sofia T.
D'Alessandro, Umberto
Tinto, Halidou
Karema, Corine
Hunt, Paul
Cravo, Pedro
dc.subject.por.fl_str_mv Artemisinin
Drug resistance
Endocytic machinery
Genomics
Malaria
Mutation
Plasmodium chabaudi
Parasitology
Infectious Diseases
Genetics
SDG 3 - Good Health and Well-being
topic Artemisinin
Drug resistance
Endocytic machinery
Genomics
Malaria
Mutation
Plasmodium chabaudi
Parasitology
Infectious Diseases
Genetics
SDG 3 - Good Health and Well-being
description Background: The control of malaria, caused by Plasmodium falciparum, is hampered by the relentless evolution of drug resistance. Because artemisinin derivatives are now used in the most effective anti-malarial therapy, resistance to artemisinin would be catastrophic. Indeed, studies suggest that artemisinin resistance has already appeared in natural infections. Understanding the mechanisms of resistance would help to prolong the effective lifetime of these drugs. Genetic markers of resistance are therefore required urgently. Previously, a mutation in a de-ubiquitinating enzyme was shown to confer artemisinin resistance in the rodent malaria parasite Plasmodium chabaudi. Methods. Here, for a mutant P. chabaudi malaria parasite and its immediate progenitor, the in vivo artemisinin resistance phenotypes and the mutations arising using Illumina whole-genome re-sequencing were compared. Results: An increased artemisinin resistance phenotype is accompanied by one non-synonymous substitution. The mutated gene encodes the μ-chain of the AP2 adaptor complex, a component of the endocytic machinery. Homology models indicate that the mutated residue interacts with a cargo recognition sequence. In natural infections of the human malaria parasite P. falciparum, 12 polymorphisms (nine SNPs and three indels) were identified in the orthologous gene. Conclusion: An increased artemisinin-resistant phenotype occurs along with a mutation in a functional element of the AP2 adaptor protein complex. This suggests that endocytosis and trafficking of membrane proteins may be involved, generating new insights into possible mechanisms of resistance. The genotypes of this adaptor protein can be evaluated for its role in artemisinin responses in human infections of P. falciparum.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-09
2013-04-09T00:00:00Z
2021-05-04T22:55:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/117026
url http://hdl.handle.net/10362/117026
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1475-2875
PURE: 26055525
https://doi.org/10.1186/1475-2875-12-118
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138043998765056