Enhancing E-learning platforms with social networks mining

Detalhes bibliográficos
Autor(a) principal: Costa, Jorge Emanuel Frazão
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/3711
Resumo: Social Networks appeared as an Internet application that offers several tools to create a personal virtual profile, add other users as friends, and interact with them through messages. These networks quickly evolved and won particular importance in people lives. Now, everyday, people use social networks to share news, interests, and discuss topics that in some way are important to them. Together with social networks, e-learning platforms and related technologies have evolved in the recent years. Both platforms and technologies (social networks and e-learning) enable access to specific information and are able to redirect specific content to an individual person. This dissertation is motivated on social networks data mining over e-learning platforms. It considers the following four social networks: Facebook, Twitter, Google Plus, and Delicious. In order to acquire, analyze, and make a correct and precise implementation of data, two different approaches were followed: enhancement of a current e-learning platform and improvement of search engines. The first approach proposes and elaborates a recommendation tool for Web documents using, as main criterion, social information to support a custom Learning Management System (LMS). In order to create the proposed system, three distinct applications (the Crawler, the SocialRank, and the Recommender) were proposed. Such data will be then incorporated into an LMS system, such as the Personal Learning Environment Box (PLEBOX). PLEBOX is a custom platform based on operating systems layout, and also, provides a software development kit (SDK), a group of tools, to create and manage modules. The results of recommendation tool about ten course units are presented. The second part presents an approach to improve a search engine based on social networks content. Subsequently, a depth analysis to justify the abovementioned procedures in order to create the SocialRank is presented. Finally, the results are presented and validated together with a custom search engine. Then, a solution to integrate and offer an order improvement of Web contents in a search engine was proposed, created, demonstrated, and validated, and it is ready for use.
id RCAP_58ef5b51f9a56679ad7a61577ff2d4dc
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/3711
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Enhancing E-learning platforms with social networks miningRedes sociaisE-learningE-learning - Sistemas de gestãoWorld wide webPesquisa de informaçãoSocial Networks appeared as an Internet application that offers several tools to create a personal virtual profile, add other users as friends, and interact with them through messages. These networks quickly evolved and won particular importance in people lives. Now, everyday, people use social networks to share news, interests, and discuss topics that in some way are important to them. Together with social networks, e-learning platforms and related technologies have evolved in the recent years. Both platforms and technologies (social networks and e-learning) enable access to specific information and are able to redirect specific content to an individual person. This dissertation is motivated on social networks data mining over e-learning platforms. It considers the following four social networks: Facebook, Twitter, Google Plus, and Delicious. In order to acquire, analyze, and make a correct and precise implementation of data, two different approaches were followed: enhancement of a current e-learning platform and improvement of search engines. The first approach proposes and elaborates a recommendation tool for Web documents using, as main criterion, social information to support a custom Learning Management System (LMS). In order to create the proposed system, three distinct applications (the Crawler, the SocialRank, and the Recommender) were proposed. Such data will be then incorporated into an LMS system, such as the Personal Learning Environment Box (PLEBOX). PLEBOX is a custom platform based on operating systems layout, and also, provides a software development kit (SDK), a group of tools, to create and manage modules. The results of recommendation tool about ten course units are presented. The second part presents an approach to improve a search engine based on social networks content. Subsequently, a depth analysis to justify the abovementioned procedures in order to create the SocialRank is presented. Finally, the results are presented and validated together with a custom search engine. Then, a solution to integrate and offer an order improvement of Web contents in a search engine was proposed, created, demonstrated, and validated, and it is ready for use.As redes sociais surgiram como um serviço Web com funcionalidades de criação de perfil, criação e interação de amigos. Estas redes evoluíram rapidamente e ganharam uma determinada importância na vida das pessoas. Agora, todos os dias, as pessoas usam as redes sociais para partilhar notícias, interesses e discutir temas que de alguma forma são importantes para elas. Juntamente com as redes sociais, as plataformas de aprendizagem baseadas em tecnologias, conhecidas como plataformas E-learning têm evoluído muito nos últimos anos. Ambas as plataformas e tecnologias (redes sociais e E-learning) fornecem acesso a informações específicas e são capazes de redirecionar determinado conteúdo para um ou vários indivíduos (personalização). O tema desta dissertação é motivado pela mineração do conteúdo das redes sociais em plataformas E-learning. Neste sentido, foram selecionadas quatro redes sociais, Facebook, Twitter, Google Plus, e Delicious para servir de estudo de caso à solução proposta. A fim de adquirir, analisar e concretizar uma aplicação correta e precisa dos dados, duas abordagens diferentes foram seguidas: enriquecimento de uma plataforma E-learning atual e melhoria dos motores de busca. A primeira abordagem propõe e elaboração de uma ferramenta de recomendação de documentos Web usando, como principal critério, a informação social para apoiar um sistema de gestão de aprendizagem (LMS). Desta forma, foram construídas três aplicações distintas, designadas por Crawler, SocialRank e Recommender. As informações extraídas serão incorporadas num sistema E-learning, tendo sido escolhida a PLEBOX (Personal Learning Environment Box). A PLEBOX é uma plataforma personalizada baseada numa interface inspirada nos sistemas operativos, fornecendo um conjunto de ferramentas (os conhecidos SDK - software development kit), para a criação e gestão de módulos. Dez unidades curriculares foram avaliadas e os resultados do sistema de recomendação são apresentados. A segunda abordagem apresenta uma proposta para melhorar um motor de busca com base no conteúdo das redes sociais. Subsequentemente, uma análise profunda é apresentada, justificando os procedimentos de avaliação, afim de criar o ranking de resultados (o SocialRank). Por último, os resultados são apresentados e validados em conjunto com um motor de busca. Assim, foi proposta, construída, demonstrada e avaliada uma solução para integrar e oferecer uma melhoria na ordenação de conteúdos Web dentro de um motor de busca. A solução está pronta para ser utilizadaRodrigues, Joel José Puga CoelhouBibliorumCosta, Jorge Emanuel Frazão2015-07-14T13:34:06Z20122012-102012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/3711enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:40:12Zoai:ubibliorum.ubi.pt:10400.6/3711Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:45:05.095702Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Enhancing E-learning platforms with social networks mining
title Enhancing E-learning platforms with social networks mining
spellingShingle Enhancing E-learning platforms with social networks mining
Costa, Jorge Emanuel Frazão
Redes sociais
E-learning
E-learning - Sistemas de gestão
World wide web
Pesquisa de informação
title_short Enhancing E-learning platforms with social networks mining
title_full Enhancing E-learning platforms with social networks mining
title_fullStr Enhancing E-learning platforms with social networks mining
title_full_unstemmed Enhancing E-learning platforms with social networks mining
title_sort Enhancing E-learning platforms with social networks mining
author Costa, Jorge Emanuel Frazão
author_facet Costa, Jorge Emanuel Frazão
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Joel José Puga Coelho
uBibliorum
dc.contributor.author.fl_str_mv Costa, Jorge Emanuel Frazão
dc.subject.por.fl_str_mv Redes sociais
E-learning
E-learning - Sistemas de gestão
World wide web
Pesquisa de informação
topic Redes sociais
E-learning
E-learning - Sistemas de gestão
World wide web
Pesquisa de informação
description Social Networks appeared as an Internet application that offers several tools to create a personal virtual profile, add other users as friends, and interact with them through messages. These networks quickly evolved and won particular importance in people lives. Now, everyday, people use social networks to share news, interests, and discuss topics that in some way are important to them. Together with social networks, e-learning platforms and related technologies have evolved in the recent years. Both platforms and technologies (social networks and e-learning) enable access to specific information and are able to redirect specific content to an individual person. This dissertation is motivated on social networks data mining over e-learning platforms. It considers the following four social networks: Facebook, Twitter, Google Plus, and Delicious. In order to acquire, analyze, and make a correct and precise implementation of data, two different approaches were followed: enhancement of a current e-learning platform and improvement of search engines. The first approach proposes and elaborates a recommendation tool for Web documents using, as main criterion, social information to support a custom Learning Management System (LMS). In order to create the proposed system, three distinct applications (the Crawler, the SocialRank, and the Recommender) were proposed. Such data will be then incorporated into an LMS system, such as the Personal Learning Environment Box (PLEBOX). PLEBOX is a custom platform based on operating systems layout, and also, provides a software development kit (SDK), a group of tools, to create and manage modules. The results of recommendation tool about ten course units are presented. The second part presents an approach to improve a search engine based on social networks content. Subsequently, a depth analysis to justify the abovementioned procedures in order to create the SocialRank is presented. Finally, the results are presented and validated together with a custom search engine. Then, a solution to integrate and offer an order improvement of Web contents in a search engine was proposed, created, demonstrated, and validated, and it is ready for use.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-10
2012-01-01T00:00:00Z
2015-07-14T13:34:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/3711
url http://hdl.handle.net/10400.6/3711
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136347445788672