Optimal leverage association rules with numerical interval conditions

Detalhes bibliográficos
Autor(a) principal: Jorge, Alípio M.
Data de Publicação: 2012
Outros Autores: Azevedo, Paulo J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/33812
Resumo: In this paper we propose a framework for defining and discovering optimal association rules involving a numerical attribute A in the consequent. The consequent has the form of interval conditions A, A≥ x or A ∈ I where I is an interval or a set of intervals of the form [x_l,x_u. The optimality is with respect to leverage, one well known association rule interest measure. The generated rules are called Maximal Leverage Rules MLR and are generated from Distribution Rules. The principle for finding the MLR is related to the Kolmogorov-Smirnov goodness of fit statistical test. We propose different methods for MLR generation, taking into account leverage optimallity and readability. We theoretically demonstrate the optimality of the main exact methods, and measure the leverage loss of approximate methods. We show empirically that the discovery process is scalable.
id RCAP_597bf9e358bce58217983112f21f2690
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/33812
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimal leverage association rules with numerical interval conditionsNumerical association rulesLeverageOptimal association rules.Distribution rulesScience & TechnologyIn this paper we propose a framework for defining and discovering optimal association rules involving a numerical attribute A in the consequent. The consequent has the form of interval conditions A, A≥ x or A ∈ I where I is an interval or a set of intervals of the form [x_l,x_u. The optimality is with respect to leverage, one well known association rule interest measure. The generated rules are called Maximal Leverage Rules MLR and are generated from Distribution Rules. The principle for finding the MLR is related to the Kolmogorov-Smirnov goodness of fit statistical test. We propose different methods for MLR generation, taking into account leverage optimallity and readability. We theoretically demonstrate the optimality of the main exact methods, and measure the leverage loss of approximate methods. We show empirically that the discovery process is scalable.This work was partially supported by the FCT project MORWAQ (PTDC/EIA/68489/2006) and by Fundacao Ciencia e Tecnologia, FEDER e Programa de Financiamento Plurianual de Unidades de I & D. Special thanks to Brett Drury for giving some suggestions regarding the wording of two paragraphs.IOS PressUniversidade do MinhoJorge, Alípio M.Azevedo, Paulo J.20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/33812eng1088-467X10.3233/IDA-2011-0509info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:54:13Zoai:repositorium.sdum.uminho.pt:1822/33812Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:53:45.657566Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimal leverage association rules with numerical interval conditions
title Optimal leverage association rules with numerical interval conditions
spellingShingle Optimal leverage association rules with numerical interval conditions
Jorge, Alípio M.
Numerical association rules
Leverage
Optimal association rules.
Distribution rules
Science & Technology
title_short Optimal leverage association rules with numerical interval conditions
title_full Optimal leverage association rules with numerical interval conditions
title_fullStr Optimal leverage association rules with numerical interval conditions
title_full_unstemmed Optimal leverage association rules with numerical interval conditions
title_sort Optimal leverage association rules with numerical interval conditions
author Jorge, Alípio M.
author_facet Jorge, Alípio M.
Azevedo, Paulo J.
author_role author
author2 Azevedo, Paulo J.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Jorge, Alípio M.
Azevedo, Paulo J.
dc.subject.por.fl_str_mv Numerical association rules
Leverage
Optimal association rules.
Distribution rules
Science & Technology
topic Numerical association rules
Leverage
Optimal association rules.
Distribution rules
Science & Technology
description In this paper we propose a framework for defining and discovering optimal association rules involving a numerical attribute A in the consequent. The consequent has the form of interval conditions A, A≥ x or A ∈ I where I is an interval or a set of intervals of the form [x_l,x_u. The optimality is with respect to leverage, one well known association rule interest measure. The generated rules are called Maximal Leverage Rules MLR and are generated from Distribution Rules. The principle for finding the MLR is related to the Kolmogorov-Smirnov goodness of fit statistical test. We propose different methods for MLR generation, taking into account leverage optimallity and readability. We theoretically demonstrate the optimality of the main exact methods, and measure the leverage loss of approximate methods. We show empirically that the discovery process is scalable.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/33812
url http://hdl.handle.net/1822/33812
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1088-467X
10.3233/IDA-2011-0509
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133134871068672