Optimal leverage association rules with numerical interval conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/33812 |
Resumo: | In this paper we propose a framework for defining and discovering optimal association rules involving a numerical attribute A in the consequent. The consequent has the form of interval conditions A, A≥ x or A ∈ I where I is an interval or a set of intervals of the form [x_l,x_u. The optimality is with respect to leverage, one well known association rule interest measure. The generated rules are called Maximal Leverage Rules MLR and are generated from Distribution Rules. The principle for finding the MLR is related to the Kolmogorov-Smirnov goodness of fit statistical test. We propose different methods for MLR generation, taking into account leverage optimallity and readability. We theoretically demonstrate the optimality of the main exact methods, and measure the leverage loss of approximate methods. We show empirically that the discovery process is scalable. |
id |
RCAP_597bf9e358bce58217983112f21f2690 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/33812 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimal leverage association rules with numerical interval conditionsNumerical association rulesLeverageOptimal association rules.Distribution rulesScience & TechnologyIn this paper we propose a framework for defining and discovering optimal association rules involving a numerical attribute A in the consequent. The consequent has the form of interval conditions A, A≥ x or A ∈ I where I is an interval or a set of intervals of the form [x_l,x_u. The optimality is with respect to leverage, one well known association rule interest measure. The generated rules are called Maximal Leverage Rules MLR and are generated from Distribution Rules. The principle for finding the MLR is related to the Kolmogorov-Smirnov goodness of fit statistical test. We propose different methods for MLR generation, taking into account leverage optimallity and readability. We theoretically demonstrate the optimality of the main exact methods, and measure the leverage loss of approximate methods. We show empirically that the discovery process is scalable.This work was partially supported by the FCT project MORWAQ (PTDC/EIA/68489/2006) and by Fundacao Ciencia e Tecnologia, FEDER e Programa de Financiamento Plurianual de Unidades de I & D. Special thanks to Brett Drury for giving some suggestions regarding the wording of two paragraphs.IOS PressUniversidade do MinhoJorge, Alípio M.Azevedo, Paulo J.20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/33812eng1088-467X10.3233/IDA-2011-0509info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:54:13Zoai:repositorium.sdum.uminho.pt:1822/33812Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:53:45.657566Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimal leverage association rules with numerical interval conditions |
title |
Optimal leverage association rules with numerical interval conditions |
spellingShingle |
Optimal leverage association rules with numerical interval conditions Jorge, Alípio M. Numerical association rules Leverage Optimal association rules. Distribution rules Science & Technology |
title_short |
Optimal leverage association rules with numerical interval conditions |
title_full |
Optimal leverage association rules with numerical interval conditions |
title_fullStr |
Optimal leverage association rules with numerical interval conditions |
title_full_unstemmed |
Optimal leverage association rules with numerical interval conditions |
title_sort |
Optimal leverage association rules with numerical interval conditions |
author |
Jorge, Alípio M. |
author_facet |
Jorge, Alípio M. Azevedo, Paulo J. |
author_role |
author |
author2 |
Azevedo, Paulo J. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Jorge, Alípio M. Azevedo, Paulo J. |
dc.subject.por.fl_str_mv |
Numerical association rules Leverage Optimal association rules. Distribution rules Science & Technology |
topic |
Numerical association rules Leverage Optimal association rules. Distribution rules Science & Technology |
description |
In this paper we propose a framework for defining and discovering optimal association rules involving a numerical attribute A in the consequent. The consequent has the form of interval conditions A, A≥ x or A ∈ I where I is an interval or a set of intervals of the form [x_l,x_u. The optimality is with respect to leverage, one well known association rule interest measure. The generated rules are called Maximal Leverage Rules MLR and are generated from Distribution Rules. The principle for finding the MLR is related to the Kolmogorov-Smirnov goodness of fit statistical test. We propose different methods for MLR generation, taking into account leverage optimallity and readability. We theoretically demonstrate the optimality of the main exact methods, and measure the leverage loss of approximate methods. We show empirically that the discovery process is scalable. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/33812 |
url |
http://hdl.handle.net/1822/33812 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1088-467X 10.3233/IDA-2011-0509 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOS Press |
publisher.none.fl_str_mv |
IOS Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133134871068672 |