Predicting real estate price variations using machine learning and google trends

Detalhes bibliográficos
Autor(a) principal: Begaud, Bradley Christopher
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/38041
Resumo: The goal of this paper is to create a modern model via the use of machine learning (such as support vector regression, regression tree and neural networks) and google trends to predict real estate price variations. The model should achieve significant predictive capabilities in monthly variations and should be both interpretable and not overly complex. There is major interest in being able to predict real estate prices and many articles have been published on the subject. Most traditional models use economic data which are usually published quarterly or annually and thus are not very efficient for short term predicting. There is interest from the investor point of view in the subject goes, yet it goes beyond as it is one of the most important costs for a regular family. These models will use as inputs various variables that effect either directly or indirectly prices in real estate. We will focus on the Miami metropolitan area or the Miami-Fort Lauderdale-Pompano Beach area. The US market was chosen because it provides the best access to reliable and consistent data. Our model will also focus on predicting single family house prices which are very popular in the US. Our study has yielded mixed results as the accuracy of the predictions is either mediocre or decent depending on the model used. However, the accuracy in predicting the direction of the variation is very good with all models obtaining 85% or above and one model superior to 95%.
id RCAP_59f447e51cb5b570ffb23f6ffdd548cd
oai_identifier_str oai:repositorio.ucp.pt:10400.14/38041
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting real estate price variations using machine learning and google trendsMachine learningGoogle trendsReal estatePricesVariationsMiamiAprendizagem automáticaTendências do googleSetor imobiliárioPreçosVariaçõesDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe goal of this paper is to create a modern model via the use of machine learning (such as support vector regression, regression tree and neural networks) and google trends to predict real estate price variations. The model should achieve significant predictive capabilities in monthly variations and should be both interpretable and not overly complex. There is major interest in being able to predict real estate prices and many articles have been published on the subject. Most traditional models use economic data which are usually published quarterly or annually and thus are not very efficient for short term predicting. There is interest from the investor point of view in the subject goes, yet it goes beyond as it is one of the most important costs for a regular family. These models will use as inputs various variables that effect either directly or indirectly prices in real estate. We will focus on the Miami metropolitan area or the Miami-Fort Lauderdale-Pompano Beach area. The US market was chosen because it provides the best access to reliable and consistent data. Our model will also focus on predicting single family house prices which are very popular in the US. Our study has yielded mixed results as the accuracy of the predictions is either mediocre or decent depending on the model used. However, the accuracy in predicting the direction of the variation is very good with all models obtaining 85% or above and one model superior to 95%.O objetivo desta tese é criar um modelo moderno através do uso de aprendizagem automática (tais como o suporte de regressões vetoriais, árvores de regressão e redes neutras) e tendências do google para prever variações de preços no setor imobiliário. O modelo pretende obter grandes capacidades de previsão em variações mensais, que devem ser interpretáveis e pouco complexas. Existe grande interesse em ter capacidade de prever preços do mercado imobiliário, sendo que diversos artigos sobre o assunto têm sido publicados. A maioria dos modelos económicos tradicionais usam dados que são publicados numa base trimestral ou anual, o que faz com que não sejam muito eficientes para previsões a curto prazo. Existe um interesse do ponto de vista do investidor acerca do desenvolvimento do assunto, sendo que também é um dos mais importantes custos para uma família regular. Estes modelos vão usar como contributos variáveis que influenciam tanto direta como indiretamente os preços do mercado imobiliário. Nós vamo-nos focar na área Metropolitana de Miami ou a área de Miami-Fort Lauderdale-Pompano Beach. O mercado norte-americano foi escolhido porque proporciona o melhor acesso a informações consistentes e credíveis. O nosso modelo irá focar-se em prever preços de casas muito populares nos EUA para famílias singulares. O nosso estudo demonstrou resultados mistos, sendo que a precisão das previsões ou é medíocre ou é decente, dependendo do modelo usado. Contudo, a precisão em prever a trajetória da variação é muito boa, havendo modelos a obterem 85% ou mais, inclusive um com 95%.Giordani, PauloVeritati - Repositório Institucional da Universidade Católica PortuguesaBegaud, Bradley Christopher2022-07-01T13:55:28Z2021-10-182021-092021-10-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/38041TID:202962725enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:43:32Zoai:repositorio.ucp.pt:10400.14/38041Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:31:00.239219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting real estate price variations using machine learning and google trends
title Predicting real estate price variations using machine learning and google trends
spellingShingle Predicting real estate price variations using machine learning and google trends
Begaud, Bradley Christopher
Machine learning
Google trends
Real estate
Prices
Variations
Miami
Aprendizagem automática
Tendências do google
Setor imobiliário
Preços
Variações
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Predicting real estate price variations using machine learning and google trends
title_full Predicting real estate price variations using machine learning and google trends
title_fullStr Predicting real estate price variations using machine learning and google trends
title_full_unstemmed Predicting real estate price variations using machine learning and google trends
title_sort Predicting real estate price variations using machine learning and google trends
author Begaud, Bradley Christopher
author_facet Begaud, Bradley Christopher
author_role author
dc.contributor.none.fl_str_mv Giordani, Paulo
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Begaud, Bradley Christopher
dc.subject.por.fl_str_mv Machine learning
Google trends
Real estate
Prices
Variations
Miami
Aprendizagem automática
Tendências do google
Setor imobiliário
Preços
Variações
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Machine learning
Google trends
Real estate
Prices
Variations
Miami
Aprendizagem automática
Tendências do google
Setor imobiliário
Preços
Variações
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description The goal of this paper is to create a modern model via the use of machine learning (such as support vector regression, regression tree and neural networks) and google trends to predict real estate price variations. The model should achieve significant predictive capabilities in monthly variations and should be both interpretable and not overly complex. There is major interest in being able to predict real estate prices and many articles have been published on the subject. Most traditional models use economic data which are usually published quarterly or annually and thus are not very efficient for short term predicting. There is interest from the investor point of view in the subject goes, yet it goes beyond as it is one of the most important costs for a regular family. These models will use as inputs various variables that effect either directly or indirectly prices in real estate. We will focus on the Miami metropolitan area or the Miami-Fort Lauderdale-Pompano Beach area. The US market was chosen because it provides the best access to reliable and consistent data. Our model will also focus on predicting single family house prices which are very popular in the US. Our study has yielded mixed results as the accuracy of the predictions is either mediocre or decent depending on the model used. However, the accuracy in predicting the direction of the variation is very good with all models obtaining 85% or above and one model superior to 95%.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-18
2021-09
2021-10-18T00:00:00Z
2022-07-01T13:55:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/38041
TID:202962725
url http://hdl.handle.net/10400.14/38041
identifier_str_mv TID:202962725
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132033230831616