Predicting real estate price variations using machine learning and google trends
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/38041 |
Resumo: | The goal of this paper is to create a modern model via the use of machine learning (such as support vector regression, regression tree and neural networks) and google trends to predict real estate price variations. The model should achieve significant predictive capabilities in monthly variations and should be both interpretable and not overly complex. There is major interest in being able to predict real estate prices and many articles have been published on the subject. Most traditional models use economic data which are usually published quarterly or annually and thus are not very efficient for short term predicting. There is interest from the investor point of view in the subject goes, yet it goes beyond as it is one of the most important costs for a regular family. These models will use as inputs various variables that effect either directly or indirectly prices in real estate. We will focus on the Miami metropolitan area or the Miami-Fort Lauderdale-Pompano Beach area. The US market was chosen because it provides the best access to reliable and consistent data. Our model will also focus on predicting single family house prices which are very popular in the US. Our study has yielded mixed results as the accuracy of the predictions is either mediocre or decent depending on the model used. However, the accuracy in predicting the direction of the variation is very good with all models obtaining 85% or above and one model superior to 95%. |
id |
RCAP_59f447e51cb5b570ffb23f6ffdd548cd |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/38041 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting real estate price variations using machine learning and google trendsMachine learningGoogle trendsReal estatePricesVariationsMiamiAprendizagem automáticaTendências do googleSetor imobiliárioPreçosVariaçõesDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe goal of this paper is to create a modern model via the use of machine learning (such as support vector regression, regression tree and neural networks) and google trends to predict real estate price variations. The model should achieve significant predictive capabilities in monthly variations and should be both interpretable and not overly complex. There is major interest in being able to predict real estate prices and many articles have been published on the subject. Most traditional models use economic data which are usually published quarterly or annually and thus are not very efficient for short term predicting. There is interest from the investor point of view in the subject goes, yet it goes beyond as it is one of the most important costs for a regular family. These models will use as inputs various variables that effect either directly or indirectly prices in real estate. We will focus on the Miami metropolitan area or the Miami-Fort Lauderdale-Pompano Beach area. The US market was chosen because it provides the best access to reliable and consistent data. Our model will also focus on predicting single family house prices which are very popular in the US. Our study has yielded mixed results as the accuracy of the predictions is either mediocre or decent depending on the model used. However, the accuracy in predicting the direction of the variation is very good with all models obtaining 85% or above and one model superior to 95%.O objetivo desta tese é criar um modelo moderno através do uso de aprendizagem automática (tais como o suporte de regressões vetoriais, árvores de regressão e redes neutras) e tendências do google para prever variações de preços no setor imobiliário. O modelo pretende obter grandes capacidades de previsão em variações mensais, que devem ser interpretáveis e pouco complexas. Existe grande interesse em ter capacidade de prever preços do mercado imobiliário, sendo que diversos artigos sobre o assunto têm sido publicados. A maioria dos modelos económicos tradicionais usam dados que são publicados numa base trimestral ou anual, o que faz com que não sejam muito eficientes para previsões a curto prazo. Existe um interesse do ponto de vista do investidor acerca do desenvolvimento do assunto, sendo que também é um dos mais importantes custos para uma família regular. Estes modelos vão usar como contributos variáveis que influenciam tanto direta como indiretamente os preços do mercado imobiliário. Nós vamo-nos focar na área Metropolitana de Miami ou a área de Miami-Fort Lauderdale-Pompano Beach. O mercado norte-americano foi escolhido porque proporciona o melhor acesso a informações consistentes e credíveis. O nosso modelo irá focar-se em prever preços de casas muito populares nos EUA para famílias singulares. O nosso estudo demonstrou resultados mistos, sendo que a precisão das previsões ou é medíocre ou é decente, dependendo do modelo usado. Contudo, a precisão em prever a trajetória da variação é muito boa, havendo modelos a obterem 85% ou mais, inclusive um com 95%.Giordani, PauloVeritati - Repositório Institucional da Universidade Católica PortuguesaBegaud, Bradley Christopher2022-07-01T13:55:28Z2021-10-182021-092021-10-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/38041TID:202962725enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:43:32Zoai:repositorio.ucp.pt:10400.14/38041Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:31:00.239219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting real estate price variations using machine learning and google trends |
title |
Predicting real estate price variations using machine learning and google trends |
spellingShingle |
Predicting real estate price variations using machine learning and google trends Begaud, Bradley Christopher Machine learning Google trends Real estate Prices Variations Miami Aprendizagem automática Tendências do google Setor imobiliário Preços Variações Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Predicting real estate price variations using machine learning and google trends |
title_full |
Predicting real estate price variations using machine learning and google trends |
title_fullStr |
Predicting real estate price variations using machine learning and google trends |
title_full_unstemmed |
Predicting real estate price variations using machine learning and google trends |
title_sort |
Predicting real estate price variations using machine learning and google trends |
author |
Begaud, Bradley Christopher |
author_facet |
Begaud, Bradley Christopher |
author_role |
author |
dc.contributor.none.fl_str_mv |
Giordani, Paulo Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Begaud, Bradley Christopher |
dc.subject.por.fl_str_mv |
Machine learning Google trends Real estate Prices Variations Miami Aprendizagem automática Tendências do google Setor imobiliário Preços Variações Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Google trends Real estate Prices Variations Miami Aprendizagem automática Tendências do google Setor imobiliário Preços Variações Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
The goal of this paper is to create a modern model via the use of machine learning (such as support vector regression, regression tree and neural networks) and google trends to predict real estate price variations. The model should achieve significant predictive capabilities in monthly variations and should be both interpretable and not overly complex. There is major interest in being able to predict real estate prices and many articles have been published on the subject. Most traditional models use economic data which are usually published quarterly or annually and thus are not very efficient for short term predicting. There is interest from the investor point of view in the subject goes, yet it goes beyond as it is one of the most important costs for a regular family. These models will use as inputs various variables that effect either directly or indirectly prices in real estate. We will focus on the Miami metropolitan area or the Miami-Fort Lauderdale-Pompano Beach area. The US market was chosen because it provides the best access to reliable and consistent data. Our model will also focus on predicting single family house prices which are very popular in the US. Our study has yielded mixed results as the accuracy of the predictions is either mediocre or decent depending on the model used. However, the accuracy in predicting the direction of the variation is very good with all models obtaining 85% or above and one model superior to 95%. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-18 2021-09 2021-10-18T00:00:00Z 2022-07-01T13:55:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/38041 TID:202962725 |
url |
http://hdl.handle.net/10400.14/38041 |
identifier_str_mv |
TID:202962725 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132033230831616 |