Hyperbolic linear canonical transforms of quaternion signals and uncertainty

Detalhes bibliográficos
Autor(a) principal: Morais, J.
Data de Publicação: 2023
Outros Autores: Ferreira, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/8357
Resumo: *The final version is published in Applied Mathematics and Computation (450), 2023, Article 127971. It as available via the website https://doi.org/10.1016/j.amc.2023.127971
id RCAP_5aa3b2bbadb2fe327113fb74d44ce96e
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/8357
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hyperbolic linear canonical transforms of quaternion signals and uncertaintyQuaternionic AnalysisQuaternion Hyperbolic Linear Canonical TransformsPlancherel and Parseval TheoremsRiemann-Lebesgue LemmaHeisenberg uncertainty principles*The final version is published in Applied Mathematics and Computation (450), 2023, Article 127971. It as available via the website https://doi.org/10.1016/j.amc.2023.127971Acknowledgements: The first author’s work was supported by the Asociaci´on Mexicana de Cultura, A. C.. The work of M. Ferreira was supported by Portuguese funds through CIDMA-Center for Research and Development in Mathematics and Applications, and FCT – Fundação para a Ciência e a Tecnologia, within projects UIDB/04106/2020 and UIDP/04106/202.This paper is concerned with Linear Canonical Transforms (LCTs) associated with two-dimensional quaternion-valued signals defined in an open rectangle of the Euclidean plane endowed with a hyperbolic measure, which we call Quaternion Hyperbolic Linear Canonical Transforms (QHLCTs). These transforms are defined by replacing the Euclidean plane wave with a corresponding hyperbolic relativistic plane wave in one dimension multiplied by quadratic modulations in both the hyperbolic spatial and frequency domains, giving the hyperbolic counterpart of the Euclidean LCTs. We prove the fundamental properties of the partial QHLCTs and the right-sided QHLCT by employing hyperbolic geometry tools and establish main results such as the Riemann-Lebesgue Lemma, the Plancherel and Parseval Theorems, and inversion formulas. The analysis is carried out in terms of novel hyperbolic derivative and hyperbolic primitive concepts, which lead to the differentiation and integration properties of the QHLCTs. The results are applied to establish two quaternionic versions of the Heisenberg uncertainty principle for the right-sided QHLCT. These uncertainty principles prescribe a lower bound on the product of the effective widths of quaternion-valued signals in the hyperbolic spatial and frequency domains. It is shown that only hyperbolic Gaussian quaternion functions minimize the uncertainty relations.ElsevierIC-OnlineMorais, J.Ferreira, M.20232025-08-01T00:00:00Z2023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.8/8357engJ. Morais and M. Ferreira, Hyperbolic linear canonical transforms of quaternion signals and uncertainty, Applied Mathematics and Computation (450), 2023, Article 127971.0096-3003127971https://doi.org/10.1016/j.amc.2023.1279711873-5649info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:57:09Zoai:iconline.ipleiria.pt:10400.8/8357Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:51:05.755730Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hyperbolic linear canonical transforms of quaternion signals and uncertainty
title Hyperbolic linear canonical transforms of quaternion signals and uncertainty
spellingShingle Hyperbolic linear canonical transforms of quaternion signals and uncertainty
Morais, J.
Quaternionic Analysis
Quaternion Hyperbolic Linear Canonical Transforms
Plancherel and Parseval Theorems
Riemann-Lebesgue Lemma
Heisenberg uncertainty principles
title_short Hyperbolic linear canonical transforms of quaternion signals and uncertainty
title_full Hyperbolic linear canonical transforms of quaternion signals and uncertainty
title_fullStr Hyperbolic linear canonical transforms of quaternion signals and uncertainty
title_full_unstemmed Hyperbolic linear canonical transforms of quaternion signals and uncertainty
title_sort Hyperbolic linear canonical transforms of quaternion signals and uncertainty
author Morais, J.
author_facet Morais, J.
Ferreira, M.
author_role author
author2 Ferreira, M.
author2_role author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Morais, J.
Ferreira, M.
dc.subject.por.fl_str_mv Quaternionic Analysis
Quaternion Hyperbolic Linear Canonical Transforms
Plancherel and Parseval Theorems
Riemann-Lebesgue Lemma
Heisenberg uncertainty principles
topic Quaternionic Analysis
Quaternion Hyperbolic Linear Canonical Transforms
Plancherel and Parseval Theorems
Riemann-Lebesgue Lemma
Heisenberg uncertainty principles
description *The final version is published in Applied Mathematics and Computation (450), 2023, Article 127971. It as available via the website https://doi.org/10.1016/j.amc.2023.127971
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2025-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/8357
url http://hdl.handle.net/10400.8/8357
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv J. Morais and M. Ferreira, Hyperbolic linear canonical transforms of quaternion signals and uncertainty, Applied Mathematics and Computation (450), 2023, Article 127971.
0096-3003
127971
https://doi.org/10.1016/j.amc.2023.127971
1873-5649
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137002841440256