Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function

Detalhes bibliográficos
Autor(a) principal: Proença, Isabel
Data de Publicação: 2021
Outros Autores: Glórias, Ludgero
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/28079
Resumo: This paper proposes a two-step pseudo-maximum likelihood estimator of a spatial auto regressive exponential model for counts and other nonnegative variables; it is particularly useful for dealing with zeros. It considers a model specification allowing us to easily determine the direct and indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation study shows that this method generally behaves better in terms of bias and root mean square error than existing procedures. An empirical example estimating a knowledge production function for the NUTS II European regions is analyzed. Results show that there is spatial dependence between regions on the creation of innovation, where regions less able to transform R&D expenses into innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded that the socioeconomic environment is important and that, unlike public R&D institutions, private companies are efficient at knowledge production.
id RCAP_5b108df70cc94a88ed8b7b26dd633b8e
oai_identifier_str oai:www.repository.utl.pt:10400.5/28079
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production functionSpatial Autoregressive Exponential RegressionPoisson Pseudo-Maximum Likelihood EstimatorTwo-Step Limited Information Maximum LikelihoodSpatial SpilloversKnowledge ProductionThis paper proposes a two-step pseudo-maximum likelihood estimator of a spatial auto regressive exponential model for counts and other nonnegative variables; it is particularly useful for dealing with zeros. It considers a model specification allowing us to easily determine the direct and indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation study shows that this method generally behaves better in terms of bias and root mean square error than existing procedures. An empirical example estimating a knowledge production function for the NUTS II European regions is analyzed. Results show that there is spatial dependence between regions on the creation of innovation, where regions less able to transform R&D expenses into innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded that the socioeconomic environment is important and that, unlike public R&D institutions, private companies are efficient at knowledge production.MDPIRepositório da Universidade de LisboaProença, IsabelGlórias, Ludgero2023-08-03T17:31:54Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28079engProença, Isabel and Ludgero Glórias .(2021).” Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function”. Sustainability , Vo. 13, No. 5: 2843 at https://doi.org/10.3390/su13052843 . (Search PDF in 2023).10.3390/su13052843info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-24T01:31:28Zoai:www.repository.utl.pt:10400.5/28079Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:26:55.806406Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
title Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
spellingShingle Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
Proença, Isabel
Spatial Autoregressive Exponential Regression
Poisson Pseudo-Maximum Likelihood Estimator
Two-Step Limited Information Maximum Likelihood
Spatial Spillovers
Knowledge Production
title_short Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
title_full Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
title_fullStr Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
title_full_unstemmed Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
title_sort Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
author Proença, Isabel
author_facet Proença, Isabel
Glórias, Ludgero
author_role author
author2 Glórias, Ludgero
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Proença, Isabel
Glórias, Ludgero
dc.subject.por.fl_str_mv Spatial Autoregressive Exponential Regression
Poisson Pseudo-Maximum Likelihood Estimator
Two-Step Limited Information Maximum Likelihood
Spatial Spillovers
Knowledge Production
topic Spatial Autoregressive Exponential Regression
Poisson Pseudo-Maximum Likelihood Estimator
Two-Step Limited Information Maximum Likelihood
Spatial Spillovers
Knowledge Production
description This paper proposes a two-step pseudo-maximum likelihood estimator of a spatial auto regressive exponential model for counts and other nonnegative variables; it is particularly useful for dealing with zeros. It considers a model specification allowing us to easily determine the direct and indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation study shows that this method generally behaves better in terms of bias and root mean square error than existing procedures. An empirical example estimating a knowledge production function for the NUTS II European regions is analyzed. Results show that there is spatial dependence between regions on the creation of innovation, where regions less able to transform R&D expenses into innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded that the socioeconomic environment is important and that, unlike public R&D institutions, private companies are efficient at knowledge production.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2023-08-03T17:31:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/28079
url http://hdl.handle.net/10400.5/28079
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proença, Isabel and Ludgero Glórias .(2021).” Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function”. Sustainability , Vo. 13, No. 5: 2843 at https://doi.org/10.3390/su13052843 . (Search PDF in 2023).
10.3390/su13052843
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133537550467072