Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/28079 |
Resumo: | This paper proposes a two-step pseudo-maximum likelihood estimator of a spatial auto regressive exponential model for counts and other nonnegative variables; it is particularly useful for dealing with zeros. It considers a model specification allowing us to easily determine the direct and indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation study shows that this method generally behaves better in terms of bias and root mean square error than existing procedures. An empirical example estimating a knowledge production function for the NUTS II European regions is analyzed. Results show that there is spatial dependence between regions on the creation of innovation, where regions less able to transform R&D expenses into innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded that the socioeconomic environment is important and that, unlike public R&D institutions, private companies are efficient at knowledge production. |
id |
RCAP_5b108df70cc94a88ed8b7b26dd633b8e |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/28079 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production functionSpatial Autoregressive Exponential RegressionPoisson Pseudo-Maximum Likelihood EstimatorTwo-Step Limited Information Maximum LikelihoodSpatial SpilloversKnowledge ProductionThis paper proposes a two-step pseudo-maximum likelihood estimator of a spatial auto regressive exponential model for counts and other nonnegative variables; it is particularly useful for dealing with zeros. It considers a model specification allowing us to easily determine the direct and indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation study shows that this method generally behaves better in terms of bias and root mean square error than existing procedures. An empirical example estimating a knowledge production function for the NUTS II European regions is analyzed. Results show that there is spatial dependence between regions on the creation of innovation, where regions less able to transform R&D expenses into innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded that the socioeconomic environment is important and that, unlike public R&D institutions, private companies are efficient at knowledge production.MDPIRepositório da Universidade de LisboaProença, IsabelGlórias, Ludgero2023-08-03T17:31:54Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28079engProença, Isabel and Ludgero Glórias .(2021).” Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function”. Sustainability , Vo. 13, No. 5: 2843 at https://doi.org/10.3390/su13052843 . (Search PDF in 2023).10.3390/su13052843info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-24T01:31:28Zoai:www.repository.utl.pt:10400.5/28079Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:26:55.806406Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
title |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
spellingShingle |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function Proença, Isabel Spatial Autoregressive Exponential Regression Poisson Pseudo-Maximum Likelihood Estimator Two-Step Limited Information Maximum Likelihood Spatial Spillovers Knowledge Production |
title_short |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
title_full |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
title_fullStr |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
title_full_unstemmed |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
title_sort |
Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function |
author |
Proença, Isabel |
author_facet |
Proença, Isabel Glórias, Ludgero |
author_role |
author |
author2 |
Glórias, Ludgero |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Proença, Isabel Glórias, Ludgero |
dc.subject.por.fl_str_mv |
Spatial Autoregressive Exponential Regression Poisson Pseudo-Maximum Likelihood Estimator Two-Step Limited Information Maximum Likelihood Spatial Spillovers Knowledge Production |
topic |
Spatial Autoregressive Exponential Regression Poisson Pseudo-Maximum Likelihood Estimator Two-Step Limited Information Maximum Likelihood Spatial Spillovers Knowledge Production |
description |
This paper proposes a two-step pseudo-maximum likelihood estimator of a spatial auto regressive exponential model for counts and other nonnegative variables; it is particularly useful for dealing with zeros. It considers a model specification allowing us to easily determine the direct and indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation study shows that this method generally behaves better in terms of bias and root mean square error than existing procedures. An empirical example estimating a knowledge production function for the NUTS II European regions is analyzed. Results show that there is spatial dependence between regions on the creation of innovation, where regions less able to transform R&D expenses into innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded that the socioeconomic environment is important and that, unlike public R&D institutions, private companies are efficient at knowledge production. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2023-08-03T17:31:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/28079 |
url |
http://hdl.handle.net/10400.5/28079 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proença, Isabel and Ludgero Glórias .(2021).” Revisiting the spatial autoregressive exponential model for counts and other nonnegative variables, with application to the knowledge production function”. Sustainability , Vo. 13, No. 5: 2843 at https://doi.org/10.3390/su13052843 . (Search PDF in 2023). 10.3390/su13052843 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133537550467072 |