Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/100511 https://doi.org/10.3389/fcomp.2022.869140 |
Resumo: | The prognosis of Amyotrophic Lateral Sclerosis (ALS), a complex and rare disease, represents a challenging and essential task to better comprehend its progression and improve patients’ quality of life. The use of Machine Learning (ML) techniques in healthcare has produced valuable contributions to the prognosis field. This article presents a systematic and critical review of primary studies that used ML applied to the ALS prognosis, searching for databases, relevant predictor biomarkers, the ML algorithms and techniques, and their outcomes. We focused on studies that analyzed biomarkers commonly present in the ALS disease clinical practice, such as demographic, clinical, laboratory, and imaging data. Hence, we investigate studies to provide an overview of solutions that can be applied to develop decision support systems and be used by a higher number of ALS clinical settings. The studies were retrieved from PubMed, Science Direct, IEEEXplore, and Web of Science databases. After completing the searching and screening process, 10 articles were selected to be analyzed and summarized. The studies evaluated and used different ML algorithms, techniques, datasets, sample sizes, biomarkers, and performance metrics. Based on the results, three distinct types of prediction were identified: Disease Progression, Survival Time, and Need for Support. The biomarkers identified as relevant in more than one study were the ALSFRS/ALSFRS-R, disease duration, Forced Vital Capacity, Body Mass Index, age at onset, and Creatinine. In general, the studies presented promissory results that can be applied in developing decision support systems. Besides, we discussed the open challenges, the limitations identified, and future research opportunities. |
id |
RCAP_5e0323a23832601042b2a39b921072c5 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/100511 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A ReviewAmyotrophic Lateral SclerosisprognosisMachine Learninghealth informaticsliterature reviewThe prognosis of Amyotrophic Lateral Sclerosis (ALS), a complex and rare disease, represents a challenging and essential task to better comprehend its progression and improve patients’ quality of life. The use of Machine Learning (ML) techniques in healthcare has produced valuable contributions to the prognosis field. This article presents a systematic and critical review of primary studies that used ML applied to the ALS prognosis, searching for databases, relevant predictor biomarkers, the ML algorithms and techniques, and their outcomes. We focused on studies that analyzed biomarkers commonly present in the ALS disease clinical practice, such as demographic, clinical, laboratory, and imaging data. Hence, we investigate studies to provide an overview of solutions that can be applied to develop decision support systems and be used by a higher number of ALS clinical settings. The studies were retrieved from PubMed, Science Direct, IEEEXplore, and Web of Science databases. After completing the searching and screening process, 10 articles were selected to be analyzed and summarized. The studies evaluated and used different ML algorithms, techniques, datasets, sample sizes, biomarkers, and performance metrics. Based on the results, three distinct types of prediction were identified: Disease Progression, Survival Time, and Need for Support. The biomarkers identified as relevant in more than one study were the ALSFRS/ALSFRS-R, disease duration, Forced Vital Capacity, Body Mass Index, age at onset, and Creatinine. In general, the studies presented promissory results that can be applied in developing decision support systems. Besides, we discussed the open challenges, the limitations identified, and future research opportunities.2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100511http://hdl.handle.net/10316/100511https://doi.org/10.3389/fcomp.2022.869140eng2624-9898Papaiz, FabianoDourado, Mario Emílio TeixeiraValentim, Ricardo Alexsandro de Medeirosde Morais, Antonio Higor FreireArrais, Joel Perdizinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-06-28T20:31:04Zoai:estudogeral.uc.pt:10316/100511Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:17:53.062510Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
title |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
spellingShingle |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review Papaiz, Fabiano Amyotrophic Lateral Sclerosis prognosis Machine Learning health informatics literature review |
title_short |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
title_full |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
title_fullStr |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
title_full_unstemmed |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
title_sort |
Machine Learning Solutions Applied to Amyotrophic Lateral Sclerosis Prognosis: A Review |
author |
Papaiz, Fabiano |
author_facet |
Papaiz, Fabiano Dourado, Mario Emílio Teixeira Valentim, Ricardo Alexsandro de Medeiros de Morais, Antonio Higor Freire Arrais, Joel Perdiz |
author_role |
author |
author2 |
Dourado, Mario Emílio Teixeira Valentim, Ricardo Alexsandro de Medeiros de Morais, Antonio Higor Freire Arrais, Joel Perdiz |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Papaiz, Fabiano Dourado, Mario Emílio Teixeira Valentim, Ricardo Alexsandro de Medeiros de Morais, Antonio Higor Freire Arrais, Joel Perdiz |
dc.subject.por.fl_str_mv |
Amyotrophic Lateral Sclerosis prognosis Machine Learning health informatics literature review |
topic |
Amyotrophic Lateral Sclerosis prognosis Machine Learning health informatics literature review |
description |
The prognosis of Amyotrophic Lateral Sclerosis (ALS), a complex and rare disease, represents a challenging and essential task to better comprehend its progression and improve patients’ quality of life. The use of Machine Learning (ML) techniques in healthcare has produced valuable contributions to the prognosis field. This article presents a systematic and critical review of primary studies that used ML applied to the ALS prognosis, searching for databases, relevant predictor biomarkers, the ML algorithms and techniques, and their outcomes. We focused on studies that analyzed biomarkers commonly present in the ALS disease clinical practice, such as demographic, clinical, laboratory, and imaging data. Hence, we investigate studies to provide an overview of solutions that can be applied to develop decision support systems and be used by a higher number of ALS clinical settings. The studies were retrieved from PubMed, Science Direct, IEEEXplore, and Web of Science databases. After completing the searching and screening process, 10 articles were selected to be analyzed and summarized. The studies evaluated and used different ML algorithms, techniques, datasets, sample sizes, biomarkers, and performance metrics. Based on the results, three distinct types of prediction were identified: Disease Progression, Survival Time, and Need for Support. The biomarkers identified as relevant in more than one study were the ALSFRS/ALSFRS-R, disease duration, Forced Vital Capacity, Body Mass Index, age at onset, and Creatinine. In general, the studies presented promissory results that can be applied in developing decision support systems. Besides, we discussed the open challenges, the limitations identified, and future research opportunities. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/100511 http://hdl.handle.net/10316/100511 https://doi.org/10.3389/fcomp.2022.869140 |
url |
http://hdl.handle.net/10316/100511 https://doi.org/10.3389/fcomp.2022.869140 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2624-9898 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134074308132864 |