Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco

Detalhes bibliográficos
Autor(a) principal: Matos, Liliana Rodrigues De
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/14283
Resumo: A microbiologia preditiva é a conjugação de conhecimentos provenientes de disciplinas como a matemática, estatística e os sistemas de informação e tecnologia que pretende providenciar modelos preditivos que prevejam o comportamento microbiano em ambientes alimentares, de forma a poder prevenir a deterioração dos géneros alimentares bem como as doenças de origem alimentar. Os modelos preditivos primários, secundários e terciários são aplicados no intuito de melhorar a qualidade e segurança alimentar e particularmente os terciários, podem ser utilizados como ferramentas auxiliadoras na área de HACCP; é necessário ter em conta que estes modelos são uma representação muito simplificada da realidade, que possuem limitações devido á complexidade do comportamento microbiano e dos ambientes alimentares, podendo por isto estimar previsões que se desviem das situações reais. O presente trabalho tem como principal objectivo averiguar a aplicabilidade da microbiologia preditiva, particularmente, dos modelos terciários ou softwares preditivos, na análise de amostras de carne de vaca e porco armazenadas a 5ºC e 10ºC, comparando os resultados obtidos através da análise microbiológica clássica, realizada no laboratório de microbiologia da empresa SGS, com os resultados obtidos das previsões provenientes de dois softwares preditivos, nomeadamente, ComBase Predictor e PMP (Pathogen Modeling Program). Para tal, foram realizadas análises microbiológicas, por forma a realizar contagens de E.coli, S.aureus, L.monocytogenes e pesquisa de Salmonella e análises químicas para analisar o pH, aw e NaCl de 20 amostras de carne de vaca e 20 amostras de carne de porco Adicionalmente foram efetuadas contagens de microrganismos totais a 30ºC. Os resultados demonstraram que a ferramenta preditiva ComBase conseguiu efectuar melhores previsões para o crescimento de E. coli, S. aureus e L. monocytogenes em amostras de carne de vaca e de porco do que a ferramenta preditiva PMP. Contudo, mesmo sendo melhor, as previsões efectuadas pelo programa apresentaram desvios em relação às contagens reais que muito provavelmente se relacionam com a existência da flora de decomposição. Os resultados estimados pela ferramenta PMP foram sempre muito mais elevados do que os resultados obtidos na análise microbiológica laboratorial, o que demonstrou a sua não aplicabilidade a este tipo de amostras.
id RCAP_5ee8e36d3504e7968164e917433b1203
oai_identifier_str oai:run.unl.pt:10362/14283
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porcoMicrobiologia preditivaModelos terciáriosComBasePMPAnálise microbiológicaCarne vacaA microbiologia preditiva é a conjugação de conhecimentos provenientes de disciplinas como a matemática, estatística e os sistemas de informação e tecnologia que pretende providenciar modelos preditivos que prevejam o comportamento microbiano em ambientes alimentares, de forma a poder prevenir a deterioração dos géneros alimentares bem como as doenças de origem alimentar. Os modelos preditivos primários, secundários e terciários são aplicados no intuito de melhorar a qualidade e segurança alimentar e particularmente os terciários, podem ser utilizados como ferramentas auxiliadoras na área de HACCP; é necessário ter em conta que estes modelos são uma representação muito simplificada da realidade, que possuem limitações devido á complexidade do comportamento microbiano e dos ambientes alimentares, podendo por isto estimar previsões que se desviem das situações reais. O presente trabalho tem como principal objectivo averiguar a aplicabilidade da microbiologia preditiva, particularmente, dos modelos terciários ou softwares preditivos, na análise de amostras de carne de vaca e porco armazenadas a 5ºC e 10ºC, comparando os resultados obtidos através da análise microbiológica clássica, realizada no laboratório de microbiologia da empresa SGS, com os resultados obtidos das previsões provenientes de dois softwares preditivos, nomeadamente, ComBase Predictor e PMP (Pathogen Modeling Program). Para tal, foram realizadas análises microbiológicas, por forma a realizar contagens de E.coli, S.aureus, L.monocytogenes e pesquisa de Salmonella e análises químicas para analisar o pH, aw e NaCl de 20 amostras de carne de vaca e 20 amostras de carne de porco Adicionalmente foram efetuadas contagens de microrganismos totais a 30ºC. Os resultados demonstraram que a ferramenta preditiva ComBase conseguiu efectuar melhores previsões para o crescimento de E. coli, S. aureus e L. monocytogenes em amostras de carne de vaca e de porco do que a ferramenta preditiva PMP. Contudo, mesmo sendo melhor, as previsões efectuadas pelo programa apresentaram desvios em relação às contagens reais que muito provavelmente se relacionam com a existência da flora de decomposição. Os resultados estimados pela ferramenta PMP foram sempre muito mais elevados do que os resultados obtidos na análise microbiológica laboratorial, o que demonstrou a sua não aplicabilidade a este tipo de amostras.Duarte, Maria PaulaMachado, AnaRUNMatos, Liliana Rodrigues De2015-02-05T10:38:24Z2014-092015-022014-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/14283porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:49:23Zoai:run.unl.pt:10362/14283Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:21:44.286318Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
title Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
spellingShingle Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
Matos, Liliana Rodrigues De
Microbiologia preditiva
Modelos terciários
ComBase
PMP
Análise microbiológica
Carne vaca
title_short Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
title_full Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
title_fullStr Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
title_full_unstemmed Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
title_sort Microbiologia preditiva aplicada à análise de amostras de carne de vaca e porco
author Matos, Liliana Rodrigues De
author_facet Matos, Liliana Rodrigues De
author_role author
dc.contributor.none.fl_str_mv Duarte, Maria Paula
Machado, Ana
RUN
dc.contributor.author.fl_str_mv Matos, Liliana Rodrigues De
dc.subject.por.fl_str_mv Microbiologia preditiva
Modelos terciários
ComBase
PMP
Análise microbiológica
Carne vaca
topic Microbiologia preditiva
Modelos terciários
ComBase
PMP
Análise microbiológica
Carne vaca
description A microbiologia preditiva é a conjugação de conhecimentos provenientes de disciplinas como a matemática, estatística e os sistemas de informação e tecnologia que pretende providenciar modelos preditivos que prevejam o comportamento microbiano em ambientes alimentares, de forma a poder prevenir a deterioração dos géneros alimentares bem como as doenças de origem alimentar. Os modelos preditivos primários, secundários e terciários são aplicados no intuito de melhorar a qualidade e segurança alimentar e particularmente os terciários, podem ser utilizados como ferramentas auxiliadoras na área de HACCP; é necessário ter em conta que estes modelos são uma representação muito simplificada da realidade, que possuem limitações devido á complexidade do comportamento microbiano e dos ambientes alimentares, podendo por isto estimar previsões que se desviem das situações reais. O presente trabalho tem como principal objectivo averiguar a aplicabilidade da microbiologia preditiva, particularmente, dos modelos terciários ou softwares preditivos, na análise de amostras de carne de vaca e porco armazenadas a 5ºC e 10ºC, comparando os resultados obtidos através da análise microbiológica clássica, realizada no laboratório de microbiologia da empresa SGS, com os resultados obtidos das previsões provenientes de dois softwares preditivos, nomeadamente, ComBase Predictor e PMP (Pathogen Modeling Program). Para tal, foram realizadas análises microbiológicas, por forma a realizar contagens de E.coli, S.aureus, L.monocytogenes e pesquisa de Salmonella e análises químicas para analisar o pH, aw e NaCl de 20 amostras de carne de vaca e 20 amostras de carne de porco Adicionalmente foram efetuadas contagens de microrganismos totais a 30ºC. Os resultados demonstraram que a ferramenta preditiva ComBase conseguiu efectuar melhores previsões para o crescimento de E. coli, S. aureus e L. monocytogenes em amostras de carne de vaca e de porco do que a ferramenta preditiva PMP. Contudo, mesmo sendo melhor, as previsões efectuadas pelo programa apresentaram desvios em relação às contagens reais que muito provavelmente se relacionam com a existência da flora de decomposição. Os resultados estimados pela ferramenta PMP foram sempre muito mais elevados do que os resultados obtidos na análise microbiológica laboratorial, o que demonstrou a sua não aplicabilidade a este tipo de amostras.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
2014-09-01T00:00:00Z
2015-02-05T10:38:24Z
2015-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/14283
url http://hdl.handle.net/10362/14283
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137857524203520