dAMUSE : a new tool for denoising and blind source separation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/47370 |
Resumo: | In this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also. |
id |
RCAP_5f19853f3a3555e713d7748b095525ca |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47370 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
dAMUSE : a new tool for denoising and blind source separationEmbedding signalsGeneralized eigenvalue decompositionBlind source separation; DenoisingBiomedical applicationsIn this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also.ElsevierRepositório ComumTomé, A.M.Teixeira, AnaLang, E.W.Stadlthanner, K.Rocha, A.P.Almeida, R.2023-10-20T12:04:20Z20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47370eng10.1016/j.dsp.2005.01.004info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-26T02:16:19Zoai:comum.rcaap.pt:10400.26/47370Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:33.331186Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
dAMUSE : a new tool for denoising and blind source separation |
title |
dAMUSE : a new tool for denoising and blind source separation |
spellingShingle |
dAMUSE : a new tool for denoising and blind source separation Tomé, A.M. Embedding signals Generalized eigenvalue decomposition Blind source separation; Denoising Biomedical applications |
title_short |
dAMUSE : a new tool for denoising and blind source separation |
title_full |
dAMUSE : a new tool for denoising and blind source separation |
title_fullStr |
dAMUSE : a new tool for denoising and blind source separation |
title_full_unstemmed |
dAMUSE : a new tool for denoising and blind source separation |
title_sort |
dAMUSE : a new tool for denoising and blind source separation |
author |
Tomé, A.M. |
author_facet |
Tomé, A.M. Teixeira, Ana Lang, E.W. Stadlthanner, K. Rocha, A.P. Almeida, R. |
author_role |
author |
author2 |
Teixeira, Ana Lang, E.W. Stadlthanner, K. Rocha, A.P. Almeida, R. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Tomé, A.M. Teixeira, Ana Lang, E.W. Stadlthanner, K. Rocha, A.P. Almeida, R. |
dc.subject.por.fl_str_mv |
Embedding signals Generalized eigenvalue decomposition Blind source separation; Denoising Biomedical applications |
topic |
Embedding signals Generalized eigenvalue decomposition Blind source separation; Denoising Biomedical applications |
description |
In this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2005-01-01T00:00:00Z 2023-10-20T12:04:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47370 |
url |
http://hdl.handle.net/10400.26/47370 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.dsp.2005.01.004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133657175162880 |