Predicting burned areas of forest fires
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.4996/fireecology.1101106 |
Resumo: | Castelli, M., Vanneschi, L., & Popovič, A. (2015). Predicting burned areas of forest fires: An artificial intelligence approach. Fire Ecology, 11(1), 106-118. https://doi.org/10.4996/fireecology.1101106 |
id |
RCAP_618ea31a1ea26baca961f1299b427b85 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/71194 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting burned areas of forest firesAn artificial intelligence approachClimatic dataForest firesGenetic programmingPortugalSemanticsForestryEcology, Evolution, Behavior and SystematicsEnvironmental Science (miscellaneous)Castelli, M., Vanneschi, L., & Popovič, A. (2015). Predicting burned areas of forest fires: An artificial intelligence approach. Fire Ecology, 11(1), 106-118. https://doi.org/10.4996/fireecology.1101106Forest fires importantly influence our environment and lives. The ability of accurately predicting the area that may be involved in a forest fire event may help in optimizing fire management efforts. Given the complexity of the task, powerful computational tools are needed for predicting the amount of area that will be burned during a forest fire. The purpose of this study was to develop an intelligent system based on genetic programming for the prediction of burned areas, using only data related to the forest under analysis and meteorological data. We used geometric semantic genetic programming based on recently defined geometric semantic genetic operators for genetic programming. Experimental results, achieved using a database of 517 forest fire events between 2000 and 2003, showed the appropriateness of the proposed system for the prediction of the burned areas. In particular, results obtained with geometric semantic genetic programming were significantly better than those produced by standard genetic programming and other state of the art machine learning methods on both training and out-of-sample data. This study suggests that deeper investigation of genetic programming in the field of forest fires prediction may be productive.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNCastelli, MauroVanneschi, LeonardoPopovič, Aleš2019-05-29T22:08:16Z2015-04-012015-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttps://doi.org/10.4996/fireecology.1101106eng1933-9747PURE: 13515305http://www.scopus.com/inward/record.url?scp=84926339792&partnerID=8YFLogxKhttps://doi.org/10.4996/fireecology.1101106info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:36Zoai:run.unl.pt:10362/71194Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:11.524607Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting burned areas of forest fires An artificial intelligence approach |
title |
Predicting burned areas of forest fires |
spellingShingle |
Predicting burned areas of forest fires Castelli, Mauro Climatic data Forest fires Genetic programming Portugal Semantics Forestry Ecology, Evolution, Behavior and Systematics Environmental Science (miscellaneous) |
title_short |
Predicting burned areas of forest fires |
title_full |
Predicting burned areas of forest fires |
title_fullStr |
Predicting burned areas of forest fires |
title_full_unstemmed |
Predicting burned areas of forest fires |
title_sort |
Predicting burned areas of forest fires |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Vanneschi, Leonardo Popovič, Aleš |
author_role |
author |
author2 |
Vanneschi, Leonardo Popovič, Aleš |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Vanneschi, Leonardo Popovič, Aleš |
dc.subject.por.fl_str_mv |
Climatic data Forest fires Genetic programming Portugal Semantics Forestry Ecology, Evolution, Behavior and Systematics Environmental Science (miscellaneous) |
topic |
Climatic data Forest fires Genetic programming Portugal Semantics Forestry Ecology, Evolution, Behavior and Systematics Environmental Science (miscellaneous) |
description |
Castelli, M., Vanneschi, L., & Popovič, A. (2015). Predicting burned areas of forest fires: An artificial intelligence approach. Fire Ecology, 11(1), 106-118. https://doi.org/10.4996/fireecology.1101106 |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-01 2015-04-01T00:00:00Z 2019-05-29T22:08:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.4996/fireecology.1101106 |
url |
https://doi.org/10.4996/fireecology.1101106 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1933-9747 PURE: 13515305 http://www.scopus.com/inward/record.url?scp=84926339792&partnerID=8YFLogxK https://doi.org/10.4996/fireecology.1101106 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137973244002304 |