Crossover to the KPZ equation

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Patrícia
Data de Publicação: 2012
Outros Autores: Jara, Milton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/16880
Resumo: We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry $an^{2-\gamma}$ ($a,\gamma>0$) and it occurs at $\gamma=1/2$. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if $\gamma\in(1/2,1]$, while for $\gamma=1/2$ it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.
id RCAP_64ee5364a4a2794e68b35d13b69b2ba4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/16880
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Crossover to the KPZ equationKPZ equationWeakly asymmetric exclusionScience & TechnologyWe characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry $an^{2-\gamma}$ ($a,\gamma>0$) and it occurs at $\gamma=1/2$. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if $\gamma\in(1/2,1]$, while for $\gamma=1/2$ it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.Fundação para a Ciência e a Tecnologia (FCT)Springer VerlagUniversidade do MinhoGonçalves, PatríciaJara, Milton20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/16880eng1424-0637 (Print)10.1007/s00023-011-0147-7http://dx.doi.org/10.1007/s00023-011-0147-7info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:37:00Zoai:repositorium.sdum.uminho.pt:1822/16880Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:33:13.646081Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Crossover to the KPZ equation
title Crossover to the KPZ equation
spellingShingle Crossover to the KPZ equation
Gonçalves, Patrícia
KPZ equation
Weakly asymmetric exclusion
Science & Technology
title_short Crossover to the KPZ equation
title_full Crossover to the KPZ equation
title_fullStr Crossover to the KPZ equation
title_full_unstemmed Crossover to the KPZ equation
title_sort Crossover to the KPZ equation
author Gonçalves, Patrícia
author_facet Gonçalves, Patrícia
Jara, Milton
author_role author
author2 Jara, Milton
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Patrícia
Jara, Milton
dc.subject.por.fl_str_mv KPZ equation
Weakly asymmetric exclusion
Science & Technology
topic KPZ equation
Weakly asymmetric exclusion
Science & Technology
description We characterize the crossover regime to the KPZ equation for a class of one-dimensional weakly asymmetric exclusion processes. The crossover depends on the strength asymmetry $an^{2-\gamma}$ ($a,\gamma>0$) and it occurs at $\gamma=1/2$. We show that the density field is a solution of an Ornstein-Uhlenbeck equation if $\gamma\in(1/2,1]$, while for $\gamma=1/2$ it is an energy solution of the KPZ equation. The corresponding crossover for the current of particles is readily obtained.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/16880
url http://hdl.handle.net/1822/16880
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1424-0637 (Print)
10.1007/s00023-011-0147-7
http://dx.doi.org/10.1007/s00023-011-0147-7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132848926490624