A stochastic Burgers equation from a class of microscopic interactions

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Patrícia
Data de Publicação: 2015
Outros Autores: Jara, Milton, Sethuraman, Sunder
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/24264
Resumo: We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.
id RCAP_4b43173ed7b73a95963908903e31b47d
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/24264
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A stochastic Burgers equation from a class of microscopic interactionsKPZ equationBurgersWeakly asymmetricZero-rangeKinetically constrainedEquilibrium fluctuationsSpeed-changeFluctuationsweakly asymetricScience & TechnologyWe consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.Fundação para a Ciência e a Tecnologia (FCT)IMSUniversidade do MinhoGonçalves, PatríciaJara, MiltonSethuraman, Sunder20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24264engGonçalves, P., Jara, M., & Sethuraman, S. (2015). A stochastic burgers equation from a class of microscopic interactions. Annals of Probability, 43(1), 286-338. doi: 10.1214/13-aop8780091-179810.1214/13-aop878http://www.imstat.org/aop/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:06:10Zoai:repositorium.sdum.uminho.pt:1822/24264Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:45.759600Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A stochastic Burgers equation from a class of microscopic interactions
title A stochastic Burgers equation from a class of microscopic interactions
spellingShingle A stochastic Burgers equation from a class of microscopic interactions
Gonçalves, Patrícia
KPZ equation
Burgers
Weakly asymmetric
Zero-range
Kinetically constrained
Equilibrium fluctuations
Speed-change
Fluctuations
weakly asymetric
Science & Technology
title_short A stochastic Burgers equation from a class of microscopic interactions
title_full A stochastic Burgers equation from a class of microscopic interactions
title_fullStr A stochastic Burgers equation from a class of microscopic interactions
title_full_unstemmed A stochastic Burgers equation from a class of microscopic interactions
title_sort A stochastic Burgers equation from a class of microscopic interactions
author Gonçalves, Patrícia
author_facet Gonçalves, Patrícia
Jara, Milton
Sethuraman, Sunder
author_role author
author2 Jara, Milton
Sethuraman, Sunder
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Patrícia
Jara, Milton
Sethuraman, Sunder
dc.subject.por.fl_str_mv KPZ equation
Burgers
Weakly asymmetric
Zero-range
Kinetically constrained
Equilibrium fluctuations
Speed-change
Fluctuations
weakly asymetric
Science & Technology
topic KPZ equation
Burgers
Weakly asymmetric
Zero-range
Kinetically constrained
Equilibrium fluctuations
Speed-change
Fluctuations
weakly asymetric
Science & Technology
description We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/24264
url http://hdl.handle.net/1822/24264
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gonçalves, P., Jara, M., & Sethuraman, S. (2015). A stochastic burgers equation from a class of microscopic interactions. Annals of Probability, 43(1), 286-338. doi: 10.1214/13-aop878
0091-1798
10.1214/13-aop878
http://www.imstat.org/aop/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IMS
publisher.none.fl_str_mv IMS
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132355352330240