A stochastic Burgers equation from a class of microscopic interactions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/24264 |
Resumo: | We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds. |
id |
RCAP_4b43173ed7b73a95963908903e31b47d |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/24264 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A stochastic Burgers equation from a class of microscopic interactionsKPZ equationBurgersWeakly asymmetricZero-rangeKinetically constrainedEquilibrium fluctuationsSpeed-changeFluctuationsweakly asymetricScience & TechnologyWe consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.Fundação para a Ciência e a Tecnologia (FCT)IMSUniversidade do MinhoGonçalves, PatríciaJara, MiltonSethuraman, Sunder20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24264engGonçalves, P., Jara, M., & Sethuraman, S. (2015). A stochastic burgers equation from a class of microscopic interactions. Annals of Probability, 43(1), 286-338. doi: 10.1214/13-aop8780091-179810.1214/13-aop878http://www.imstat.org/aop/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:06:10Zoai:repositorium.sdum.uminho.pt:1822/24264Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:45.759600Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A stochastic Burgers equation from a class of microscopic interactions |
title |
A stochastic Burgers equation from a class of microscopic interactions |
spellingShingle |
A stochastic Burgers equation from a class of microscopic interactions Gonçalves, Patrícia KPZ equation Burgers Weakly asymmetric Zero-range Kinetically constrained Equilibrium fluctuations Speed-change Fluctuations weakly asymetric Science & Technology |
title_short |
A stochastic Burgers equation from a class of microscopic interactions |
title_full |
A stochastic Burgers equation from a class of microscopic interactions |
title_fullStr |
A stochastic Burgers equation from a class of microscopic interactions |
title_full_unstemmed |
A stochastic Burgers equation from a class of microscopic interactions |
title_sort |
A stochastic Burgers equation from a class of microscopic interactions |
author |
Gonçalves, Patrícia |
author_facet |
Gonçalves, Patrícia Jara, Milton Sethuraman, Sunder |
author_role |
author |
author2 |
Jara, Milton Sethuraman, Sunder |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, Patrícia Jara, Milton Sethuraman, Sunder |
dc.subject.por.fl_str_mv |
KPZ equation Burgers Weakly asymmetric Zero-range Kinetically constrained Equilibrium fluctuations Speed-change Fluctuations weakly asymetric Science & Technology |
topic |
KPZ equation Burgers Weakly asymmetric Zero-range Kinetically constrained Equilibrium fluctuations Speed-change Fluctuations weakly asymetric Science & Technology |
description |
We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/24264 |
url |
http://hdl.handle.net/1822/24264 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gonçalves, P., Jara, M., & Sethuraman, S. (2015). A stochastic burgers equation from a class of microscopic interactions. Annals of Probability, 43(1), 286-338. doi: 10.1214/13-aop878 0091-1798 10.1214/13-aop878 http://www.imstat.org/aop/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IMS |
publisher.none.fl_str_mv |
IMS |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132355352330240 |