Nonlinear fluctuations of interacting particle systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/24882 |
Resumo: | We introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, one-dimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an application of this second-order Boltzmann-Gibbs principle, we introduce the notion of energy solutions of the KPZ and stochastic Burgers equations. Under minimal assumptions, we prove that the density fluctuations of one-dimensional, stationary, weakly asymmetric, conservative particle systems are sequentially compact and that any limit point is given by energy solutions of the stochastic Burgers equation. We also show that the fluctuations of the height function associated to these models are given by energy solutions of the KPZ equation in this sense. Unfortunately, we lack a uniqueness result for these energy solutions. We conjecture these solutions to be unique, and we show some regularity results for energy solutions of the KPZ/Burgers equation, supporting this conjecture. |
id |
RCAP_8823c849009a69128fb549fa1ef33692 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/24882 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Nonlinear fluctuations of interacting particle systemsDensity fluctuationsExclusion processKPZ equationUniversality classWe introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, one-dimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an application of this second-order Boltzmann-Gibbs principle, we introduce the notion of energy solutions of the KPZ and stochastic Burgers equations. Under minimal assumptions, we prove that the density fluctuations of one-dimensional, stationary, weakly asymmetric, conservative particle systems are sequentially compact and that any limit point is given by energy solutions of the stochastic Burgers equation. We also show that the fluctuations of the height function associated to these models are given by energy solutions of the KPZ equation in this sense. Unfortunately, we lack a uniqueness result for these energy solutions. We conjecture these solutions to be unique, and we show some regularity results for energy solutions of the KPZ/Burgers equation, supporting this conjecture.FCTSpringer VerlagUniversidade do MinhoGonçalves, PatríciaJara, Milton2013-042013-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24882eng0003-95271432-0673info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:15:48Zoai:repositorium.sdum.uminho.pt:1822/24882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:08:17.418721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Nonlinear fluctuations of interacting particle systems |
title |
Nonlinear fluctuations of interacting particle systems |
spellingShingle |
Nonlinear fluctuations of interacting particle systems Gonçalves, Patrícia Density fluctuations Exclusion process KPZ equation Universality class |
title_short |
Nonlinear fluctuations of interacting particle systems |
title_full |
Nonlinear fluctuations of interacting particle systems |
title_fullStr |
Nonlinear fluctuations of interacting particle systems |
title_full_unstemmed |
Nonlinear fluctuations of interacting particle systems |
title_sort |
Nonlinear fluctuations of interacting particle systems |
author |
Gonçalves, Patrícia |
author_facet |
Gonçalves, Patrícia Jara, Milton |
author_role |
author |
author2 |
Jara, Milton |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gonçalves, Patrícia Jara, Milton |
dc.subject.por.fl_str_mv |
Density fluctuations Exclusion process KPZ equation Universality class |
topic |
Density fluctuations Exclusion process KPZ equation Universality class |
description |
We introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, one-dimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an application of this second-order Boltzmann-Gibbs principle, we introduce the notion of energy solutions of the KPZ and stochastic Burgers equations. Under minimal assumptions, we prove that the density fluctuations of one-dimensional, stationary, weakly asymmetric, conservative particle systems are sequentially compact and that any limit point is given by energy solutions of the stochastic Burgers equation. We also show that the fluctuations of the height function associated to these models are given by energy solutions of the KPZ equation in this sense. Unfortunately, we lack a uniqueness result for these energy solutions. We conjecture these solutions to be unique, and we show some regularity results for energy solutions of the KPZ/Burgers equation, supporting this conjecture. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 2013-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/24882 |
url |
http://hdl.handle.net/1822/24882 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0003-9527 1432-0673 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132504522752000 |