Nonlinear fluctuations of interacting particle systems

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Patrícia
Data de Publicação: 2013
Outros Autores: Jara, Milton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/24882
Resumo: We introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, one-dimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an application of this second-order Boltzmann-Gibbs principle, we introduce the notion of energy solutions of the KPZ and stochastic Burgers equations. Under minimal assumptions, we prove that the density fluctuations of one-dimensional, stationary, weakly asymmetric, conservative particle systems are sequentially compact and that any limit point is given by energy solutions of the stochastic Burgers equation. We also show that the fluctuations of the height function associated to these models are given by energy solutions of the KPZ equation in this sense. Unfortunately, we lack a uniqueness result for these energy solutions. We conjecture these solutions to be unique, and we show some regularity results for energy solutions of the KPZ/Burgers equation, supporting this conjecture.
id RCAP_8823c849009a69128fb549fa1ef33692
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/24882
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Nonlinear fluctuations of interacting particle systemsDensity fluctuationsExclusion processKPZ equationUniversality classWe introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, one-dimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an application of this second-order Boltzmann-Gibbs principle, we introduce the notion of energy solutions of the KPZ and stochastic Burgers equations. Under minimal assumptions, we prove that the density fluctuations of one-dimensional, stationary, weakly asymmetric, conservative particle systems are sequentially compact and that any limit point is given by energy solutions of the stochastic Burgers equation. We also show that the fluctuations of the height function associated to these models are given by energy solutions of the KPZ equation in this sense. Unfortunately, we lack a uniqueness result for these energy solutions. We conjecture these solutions to be unique, and we show some regularity results for energy solutions of the KPZ/Burgers equation, supporting this conjecture.FCTSpringer VerlagUniversidade do MinhoGonçalves, PatríciaJara, Milton2013-042013-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24882eng0003-95271432-0673info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:15:48Zoai:repositorium.sdum.uminho.pt:1822/24882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:08:17.418721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Nonlinear fluctuations of interacting particle systems
title Nonlinear fluctuations of interacting particle systems
spellingShingle Nonlinear fluctuations of interacting particle systems
Gonçalves, Patrícia
Density fluctuations
Exclusion process
KPZ equation
Universality class
title_short Nonlinear fluctuations of interacting particle systems
title_full Nonlinear fluctuations of interacting particle systems
title_fullStr Nonlinear fluctuations of interacting particle systems
title_full_unstemmed Nonlinear fluctuations of interacting particle systems
title_sort Nonlinear fluctuations of interacting particle systems
author Gonçalves, Patrícia
author_facet Gonçalves, Patrícia
Jara, Milton
author_role author
author2 Jara, Milton
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gonçalves, Patrícia
Jara, Milton
dc.subject.por.fl_str_mv Density fluctuations
Exclusion process
KPZ equation
Universality class
topic Density fluctuations
Exclusion process
KPZ equation
Universality class
description We introduce what we call the second-order Boltzmann-Gibbs principle, which allows to replace local functionals of a conservative, one-dimensional stochastic process by a possibly nonlinear function of the conserved quantity. This replacement opens the way to obtain nonlinear stochastic evolutions as the limit of the fluctuations of the conserved quantity around stationary states. As an application of this second-order Boltzmann-Gibbs principle, we introduce the notion of energy solutions of the KPZ and stochastic Burgers equations. Under minimal assumptions, we prove that the density fluctuations of one-dimensional, stationary, weakly asymmetric, conservative particle systems are sequentially compact and that any limit point is given by energy solutions of the stochastic Burgers equation. We also show that the fluctuations of the height function associated to these models are given by energy solutions of the KPZ equation in this sense. Unfortunately, we lack a uniqueness result for these energy solutions. We conjecture these solutions to be unique, and we show some regularity results for energy solutions of the KPZ/Burgers equation, supporting this conjecture.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
2013-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/24882
url http://hdl.handle.net/1822/24882
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0003-9527
1432-0673
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132504522752000