Geographical Variations of the Minimum Mortality Temperature at a Global Scale
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.18/8062 |
Resumo: | Background: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation. |
id |
RCAP_664f14964f0a8a0a7e176129068a567b |
---|---|
oai_identifier_str |
oai:repositorio.insa.pt:10400.18/8062 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geographical Variations of the Minimum Mortality Temperature at a Global ScaleAdaptationClimateDistributed Lag Nonlinear ModelsMinimum Mortality TemperatureMulti-cityMulti-countryTime-seriesDeterminantes da Saúde e da DoençaBackground: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.What this study adds: The minimum mortality temperature (MMT) is an important indicator of the relationship between temperature and mortality. It indicates the adaptability to climate, but little is known about its geographical changes in the global distribution. This article investigates the geographic differences of the MMT on a global scale and studies the influence of geographical, climatic, and socioeconomic factors. The results indicate that although there is still more room for adaptation, populations have adapted to the average temperature.Lippincott, Williams & WilkinsRepositório Científico do Instituto Nacional de SaúdeTobías, AurelioHashizume, MasahiroHonda, YasushiSera, FrancescoNg, Chris Fook ShengKim, YoonheeRoye, DominicChung, YeonseungDang, Tran NgocKim, HoLee, WhanheeÍñiguez, CarmenVicedo-Cabrera, AnaAbrutzky, RosanaGuo, YumingTong, ShiluCoelho, Micheline de Sousa Zanotti StagliorioSaldiva, Paulo Hilario NascimentoLavigne, EricCorrea, Patricia MatusOrtega, Nicolás ValdésKan, HaidongOsorio, SamuelKyselý, JanUrban, AlešOrru, HansIndermitte, EneJaakkola, Jouni J.K.Ryti, Niilo R.I.Pascal, MathildeHuber, VeronikaSchneider, AlexandraKatsouyanni, KleaAnalitis, AntonisEntezari, AlirezaMayvaneh, FatemehGoodman, PatrickZeka, ArianaMichelozzi, Paolade’Donato, FrancescaAlahmad, BarrakDiaz, Magali HurtadoDe la Cruz Valencia, CésarOvercenco, AlaHouthuijs, DannyAmeling, CarolineRao, ShilpaDi Ruscio, FrancescoCarrasco, GabrielSeposo, XerxesNunes, BaltazarMadureira, JoanaHolobaca, Iulian-HoriaScovronick, NoahAcquaotta, FiorellaForsberg, BertilÅström, ChristoferRagettli, Martina S.Guo, Yue-Liang LeonChen, Bing-YuLi, ShanshanColistro, ValentinaZanobetti, AntonellaSchwartz, JoelDung, Do VanArmstrong, BenGasparrini, Antonio2022-07-05T15:42:29Z2021-09-242021-09-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.18/8062engEnviron Epidemiol. 2021 Sep 24;5(5):e169. doi: 10.1097/EE9.0000000000000169. eCollection 2021 Oct.2474-788210.1097/EE9.0000000000000169info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-20T15:42:25Zoai:repositorio.insa.pt:10400.18/8062Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:42:49.063072Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
title |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
spellingShingle |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale Tobías, Aurelio Adaptation Climate Distributed Lag Nonlinear Models Minimum Mortality Temperature Multi-city Multi-country Time-series Determinantes da Saúde e da Doença |
title_short |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
title_full |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
title_fullStr |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
title_full_unstemmed |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
title_sort |
Geographical Variations of the Minimum Mortality Temperature at a Global Scale |
author |
Tobías, Aurelio |
author_facet |
Tobías, Aurelio Hashizume, Masahiro Honda, Yasushi Sera, Francesco Ng, Chris Fook Sheng Kim, Yoonhee Roye, Dominic Chung, Yeonseung Dang, Tran Ngoc Kim, Ho Lee, Whanhee Íñiguez, Carmen Vicedo-Cabrera, Ana Abrutzky, Rosana Guo, Yuming Tong, Shilu Coelho, Micheline de Sousa Zanotti Stagliorio Saldiva, Paulo Hilario Nascimento Lavigne, Eric Correa, Patricia Matus Ortega, Nicolás Valdés Kan, Haidong Osorio, Samuel Kyselý, Jan Urban, Aleš Orru, Hans Indermitte, Ene Jaakkola, Jouni J.K. Ryti, Niilo R.I. Pascal, Mathilde Huber, Veronika Schneider, Alexandra Katsouyanni, Klea Analitis, Antonis Entezari, Alireza Mayvaneh, Fatemeh Goodman, Patrick Zeka, Ariana Michelozzi, Paola de’Donato, Francesca Alahmad, Barrak Diaz, Magali Hurtado De la Cruz Valencia, César Overcenco, Ala Houthuijs, Danny Ameling, Caroline Rao, Shilpa Di Ruscio, Francesco Carrasco, Gabriel Seposo, Xerxes Nunes, Baltazar Madureira, Joana Holobaca, Iulian-Horia Scovronick, Noah Acquaotta, Fiorella Forsberg, Bertil Åström, Christofer Ragettli, Martina S. Guo, Yue-Liang Leon Chen, Bing-Yu Li, Shanshan Colistro, Valentina Zanobetti, Antonella Schwartz, Joel Dung, Do Van Armstrong, Ben Gasparrini, Antonio |
author_role |
author |
author2 |
Hashizume, Masahiro Honda, Yasushi Sera, Francesco Ng, Chris Fook Sheng Kim, Yoonhee Roye, Dominic Chung, Yeonseung Dang, Tran Ngoc Kim, Ho Lee, Whanhee Íñiguez, Carmen Vicedo-Cabrera, Ana Abrutzky, Rosana Guo, Yuming Tong, Shilu Coelho, Micheline de Sousa Zanotti Stagliorio Saldiva, Paulo Hilario Nascimento Lavigne, Eric Correa, Patricia Matus Ortega, Nicolás Valdés Kan, Haidong Osorio, Samuel Kyselý, Jan Urban, Aleš Orru, Hans Indermitte, Ene Jaakkola, Jouni J.K. Ryti, Niilo R.I. Pascal, Mathilde Huber, Veronika Schneider, Alexandra Katsouyanni, Klea Analitis, Antonis Entezari, Alireza Mayvaneh, Fatemeh Goodman, Patrick Zeka, Ariana Michelozzi, Paola de’Donato, Francesca Alahmad, Barrak Diaz, Magali Hurtado De la Cruz Valencia, César Overcenco, Ala Houthuijs, Danny Ameling, Caroline Rao, Shilpa Di Ruscio, Francesco Carrasco, Gabriel Seposo, Xerxes Nunes, Baltazar Madureira, Joana Holobaca, Iulian-Horia Scovronick, Noah Acquaotta, Fiorella Forsberg, Bertil Åström, Christofer Ragettli, Martina S. Guo, Yue-Liang Leon Chen, Bing-Yu Li, Shanshan Colistro, Valentina Zanobetti, Antonella Schwartz, Joel Dung, Do Van Armstrong, Ben Gasparrini, Antonio |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Nacional de Saúde |
dc.contributor.author.fl_str_mv |
Tobías, Aurelio Hashizume, Masahiro Honda, Yasushi Sera, Francesco Ng, Chris Fook Sheng Kim, Yoonhee Roye, Dominic Chung, Yeonseung Dang, Tran Ngoc Kim, Ho Lee, Whanhee Íñiguez, Carmen Vicedo-Cabrera, Ana Abrutzky, Rosana Guo, Yuming Tong, Shilu Coelho, Micheline de Sousa Zanotti Stagliorio Saldiva, Paulo Hilario Nascimento Lavigne, Eric Correa, Patricia Matus Ortega, Nicolás Valdés Kan, Haidong Osorio, Samuel Kyselý, Jan Urban, Aleš Orru, Hans Indermitte, Ene Jaakkola, Jouni J.K. Ryti, Niilo R.I. Pascal, Mathilde Huber, Veronika Schneider, Alexandra Katsouyanni, Klea Analitis, Antonis Entezari, Alireza Mayvaneh, Fatemeh Goodman, Patrick Zeka, Ariana Michelozzi, Paola de’Donato, Francesca Alahmad, Barrak Diaz, Magali Hurtado De la Cruz Valencia, César Overcenco, Ala Houthuijs, Danny Ameling, Caroline Rao, Shilpa Di Ruscio, Francesco Carrasco, Gabriel Seposo, Xerxes Nunes, Baltazar Madureira, Joana Holobaca, Iulian-Horia Scovronick, Noah Acquaotta, Fiorella Forsberg, Bertil Åström, Christofer Ragettli, Martina S. Guo, Yue-Liang Leon Chen, Bing-Yu Li, Shanshan Colistro, Valentina Zanobetti, Antonella Schwartz, Joel Dung, Do Van Armstrong, Ben Gasparrini, Antonio |
dc.subject.por.fl_str_mv |
Adaptation Climate Distributed Lag Nonlinear Models Minimum Mortality Temperature Multi-city Multi-country Time-series Determinantes da Saúde e da Doença |
topic |
Adaptation Climate Distributed Lag Nonlinear Models Minimum Mortality Temperature Multi-city Multi-country Time-series Determinantes da Saúde e da Doença |
description |
Background: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-24 2021-09-24T00:00:00Z 2022-07-05T15:42:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.18/8062 |
url |
http://hdl.handle.net/10400.18/8062 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Environ Epidemiol. 2021 Sep 24;5(5):e169. doi: 10.1097/EE9.0000000000000169. eCollection 2021 Oct. 2474-7882 10.1097/EE9.0000000000000169 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Lippincott, Williams & Wilkins |
publisher.none.fl_str_mv |
Lippincott, Williams & Wilkins |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132174659616768 |