Gait Rehabilitation Monitor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/30681 |
Resumo: | This paper presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android smartphone and a developed app for collecting, primary processing of data and for persistence of data in a remote PostgreSQL database, which is available in a remote server and where further data processing is performed. This framework provides gait features classifier by invoking an implemented REST API available in the remote server. Low computational load algorithms based on Euler angles and filtered signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms. After segmentation of the remotely collected signals for gait strides identification relevant features were extracted to feed, train and test a classifier for prediction of gait abnormalities using supervised machine learning type and Extremely Randomized Trees method. |
id |
RCAP_673bd2ba6327a96c6a9c62c105195695 |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/30681 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Gait Rehabilitation MonitorThis paper presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android smartphone and a developed app for collecting, primary processing of data and for persistence of data in a remote PostgreSQL database, which is available in a remote server and where further data processing is performed. This framework provides gait features classifier by invoking an implemented REST API available in the remote server. Low computational load algorithms based on Euler angles and filtered signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms. After segmentation of the remotely collected signals for gait strides identification relevant features were extracted to feed, train and test a classifier for prediction of gait abnormalities using supervised machine learning type and Extremely Randomized Trees method.Repositório ComumLeite, PauloPostolache, OctavianPereira, José Miguel Costa DiasPostolache, Gabriela2020-01-03T10:58:21Z2019-072019-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/30681engLeite, P., Postolache, P., Pereira, J. D., Postolache, G. (2019). Gait Rehabilitation Monitor. Journal of Physics: Conference Series.1742-659610.1088/1742-6596/1379/1/012071info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T09:55:30Zoai:comum.rcaap.pt:10400.26/30681Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:11:09.438208Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Gait Rehabilitation Monitor |
title |
Gait Rehabilitation Monitor |
spellingShingle |
Gait Rehabilitation Monitor Leite, Paulo |
title_short |
Gait Rehabilitation Monitor |
title_full |
Gait Rehabilitation Monitor |
title_fullStr |
Gait Rehabilitation Monitor |
title_full_unstemmed |
Gait Rehabilitation Monitor |
title_sort |
Gait Rehabilitation Monitor |
author |
Leite, Paulo |
author_facet |
Leite, Paulo Postolache, Octavian Pereira, José Miguel Costa Dias Postolache, Gabriela |
author_role |
author |
author2 |
Postolache, Octavian Pereira, José Miguel Costa Dias Postolache, Gabriela |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Leite, Paulo Postolache, Octavian Pereira, José Miguel Costa Dias Postolache, Gabriela |
description |
This paper presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android smartphone and a developed app for collecting, primary processing of data and for persistence of data in a remote PostgreSQL database, which is available in a remote server and where further data processing is performed. This framework provides gait features classifier by invoking an implemented REST API available in the remote server. Low computational load algorithms based on Euler angles and filtered signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms. After segmentation of the remotely collected signals for gait strides identification relevant features were extracted to feed, train and test a classifier for prediction of gait abnormalities using supervised machine learning type and Extremely Randomized Trees method. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 2019-07-01T00:00:00Z 2020-01-03T10:58:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/30681 |
url |
http://hdl.handle.net/10400.26/30681 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Leite, P., Postolache, P., Pereira, J. D., Postolache, G. (2019). Gait Rehabilitation Monitor. Journal of Physics: Conference Series. 1742-6596 10.1088/1742-6596/1379/1/012071 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135379350093824 |