Gait Rehabilitation Monitor

Detalhes bibliográficos
Autor(a) principal: Leite, Paulo
Data de Publicação: 2019
Outros Autores: Postolache, Octavian, Pereira, José Miguel Costa Dias, Postolache, Gabriela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/30681
Resumo: This paper presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android smartphone and a developed app for collecting, primary processing of data and for persistence of data in a remote PostgreSQL database, which is available in a remote server and where further data processing is performed. This framework provides gait features classifier by invoking an implemented REST API available in the remote server. Low computational load algorithms based on Euler angles and filtered signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms. After segmentation of the remotely collected signals for gait strides identification relevant features were extracted to feed, train and test a classifier for prediction of gait abnormalities using supervised machine learning type and Extremely Randomized Trees method.
id RCAP_673bd2ba6327a96c6a9c62c105195695
oai_identifier_str oai:comum.rcaap.pt:10400.26/30681
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Gait Rehabilitation MonitorThis paper presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android smartphone and a developed app for collecting, primary processing of data and for persistence of data in a remote PostgreSQL database, which is available in a remote server and where further data processing is performed. This framework provides gait features classifier by invoking an implemented REST API available in the remote server. Low computational load algorithms based on Euler angles and filtered signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms. After segmentation of the remotely collected signals for gait strides identification relevant features were extracted to feed, train and test a classifier for prediction of gait abnormalities using supervised machine learning type and Extremely Randomized Trees method.Repositório ComumLeite, PauloPostolache, OctavianPereira, José Miguel Costa DiasPostolache, Gabriela2020-01-03T10:58:21Z2019-072019-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/30681engLeite, P., Postolache, P., Pereira, J. D., Postolache, G. (2019). Gait Rehabilitation Monitor. Journal of Physics: Conference Series.1742-659610.1088/1742-6596/1379/1/012071info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T09:55:30Zoai:comum.rcaap.pt:10400.26/30681Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:11:09.438208Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Gait Rehabilitation Monitor
title Gait Rehabilitation Monitor
spellingShingle Gait Rehabilitation Monitor
Leite, Paulo
title_short Gait Rehabilitation Monitor
title_full Gait Rehabilitation Monitor
title_fullStr Gait Rehabilitation Monitor
title_full_unstemmed Gait Rehabilitation Monitor
title_sort Gait Rehabilitation Monitor
author Leite, Paulo
author_facet Leite, Paulo
Postolache, Octavian
Pereira, José Miguel Costa Dias
Postolache, Gabriela
author_role author
author2 Postolache, Octavian
Pereira, José Miguel Costa Dias
Postolache, Gabriela
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Leite, Paulo
Postolache, Octavian
Pereira, José Miguel Costa Dias
Postolache, Gabriela
description This paper presents a simple wearable, non-intrusive affordable mobile framework that allows remote patient monitoring during gait rehabilitation by doctors and physiotherapists. The system includes a set of 2 Shimmer3 9DoF Inertial Measurement Units (IMUs), an Android smartphone and a developed app for collecting, primary processing of data and for persistence of data in a remote PostgreSQL database, which is available in a remote server and where further data processing is performed. This framework provides gait features classifier by invoking an implemented REST API available in the remote server. Low computational load algorithms based on Euler angles and filtered signals were developed and used for the classification and identification of several gait disturbances. These algorithms include the alignment of IMUs sensors data by means of a common temporal reference as well as heel strike and stride detection algorithms. After segmentation of the remotely collected signals for gait strides identification relevant features were extracted to feed, train and test a classifier for prediction of gait abnormalities using supervised machine learning type and Extremely Randomized Trees method.
publishDate 2019
dc.date.none.fl_str_mv 2019-07
2019-07-01T00:00:00Z
2020-01-03T10:58:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/30681
url http://hdl.handle.net/10400.26/30681
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Leite, P., Postolache, P., Pereira, J. D., Postolache, G. (2019). Gait Rehabilitation Monitor. Journal of Physics: Conference Series.
1742-6596
10.1088/1742-6596/1379/1/012071
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135379350093824