Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/158370 |
Resumo: | Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007 |
id |
RCAP_674fd1816cfc13aeffedb07bca47ee32 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/158370 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTEClassificationData generationImbalanced learningOversamplingSMOTESupervised learningSoftwareControl and Systems EngineeringTheoretical Computer ScienceComputer Science ApplicationsInformation Systems and ManagementArtificial IntelligenceDouzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm, as well as any other oversampling method based on the SMOTE mechanism, generates synthetic samples along line segments that join minority class instances. In this paper we propose Geometric SMOTE (G-SMOTE) as a enhancement of the SMOTE data generation mechanism. G-SMOTE generates synthetic samples in a geometric region of the input space, around each selected minority instance. While in the basic configuration this region is a hyper-sphere, G-SMOTE allows its deformation to a hyper-spheroid. The performance of G-SMOTE is compared against SMOTE as well as baseline methods. We present empirical results that show a significant improvement in the quality of the generated data when G-SMOTE is used as an oversampling algorithm. An implementation of G-SMOTE is made available in the Python programming language.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNDouzas, GeorgiosBacao, Fernando2023-09-27T22:18:14Z2019-10-012019-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://hdl.handle.net/10362/158370eng0020-0255PURE: 13784337https://doi.org/10.1016/j.ins.2019.06.007info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:40:43Zoai:run.unl.pt:10362/158370Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:06.051091Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
title |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
spellingShingle |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE Douzas, Georgios Classification Data generation Imbalanced learning Oversampling SMOTE Supervised learning Software Control and Systems Engineering Theoretical Computer Science Computer Science Applications Information Systems and Management Artificial Intelligence |
title_short |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
title_full |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
title_fullStr |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
title_full_unstemmed |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
title_sort |
Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE |
author |
Douzas, Georgios |
author_facet |
Douzas, Georgios Bacao, Fernando |
author_role |
author |
author2 |
Bacao, Fernando |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Douzas, Georgios Bacao, Fernando |
dc.subject.por.fl_str_mv |
Classification Data generation Imbalanced learning Oversampling SMOTE Supervised learning Software Control and Systems Engineering Theoretical Computer Science Computer Science Applications Information Systems and Management Artificial Intelligence |
topic |
Classification Data generation Imbalanced learning Oversampling SMOTE Supervised learning Software Control and Systems Engineering Theoretical Computer Science Computer Science Applications Information Systems and Management Artificial Intelligence |
description |
Douzas, G., & Bacao, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE. Information Sciences, 501, 118-135. https://doi.org/10.1016/j.ins.2019.06.007 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-01 2019-10-01T00:00:00Z 2023-09-27T22:18:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/158370 |
url |
http://hdl.handle.net/10362/158370 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0020-0255 PURE: 13784337 https://doi.org/10.1016/j.ins.2019.06.007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
18 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138154458906624 |