Métodos numéricos para resolução de equações de Lyapunov

Detalhes bibliográficos
Autor(a) principal: Silva, Tiago Filipe Leitão
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/1851
Resumo: O objectivo desta dissertação é descrever, analisar e aplicar alguns métodos numéricos para resolver a equação clássica de Lyapunov. Estudamos condições que garantem a solubilidade das equações e estabelecemos relações entre a fórmula contínua AX + X A* + Q = 0 e a fórmula discreta AX A* − X + Q = 0 . O produto de Kronecker é usado de modo a permitir representações de equações matriciais e o desenvolvimento de alguns métodos numéricos Analisamos algumas decomposições matriciais que vão ser utilizadas no desenvolvimento de alguns métodos numéricos directos nomeadamente Bartels-Stewart e Hessenberg-Schur. Por fim, os subespaço de Krylov e alguns processos de ortogonalização permitem desenvolver os métodos iterativos de Arnoldi e GMRES e os métodos directos de Ward e Kirrinnis.
id RCAP_67cfc62f3847e1019105b2d04c77cf34
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/1851
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Métodos numéricos para resolução de equações de LyapunovMétodos numéricosEquações matriciaisKroneckerKrylovO objectivo desta dissertação é descrever, analisar e aplicar alguns métodos numéricos para resolver a equação clássica de Lyapunov. Estudamos condições que garantem a solubilidade das equações e estabelecemos relações entre a fórmula contínua AX + X A* + Q = 0 e a fórmula discreta AX A* − X + Q = 0 . O produto de Kronecker é usado de modo a permitir representações de equações matriciais e o desenvolvimento de alguns métodos numéricos Analisamos algumas decomposições matriciais que vão ser utilizadas no desenvolvimento de alguns métodos numéricos directos nomeadamente Bartels-Stewart e Hessenberg-Schur. Por fim, os subespaço de Krylov e alguns processos de ortogonalização permitem desenvolver os métodos iterativos de Arnoldi e GMRES e os métodos directos de Ward e Kirrinnis.Universidade da Beira InterioruBibliorumSilva, Tiago Filipe Leitão2014-06-12T10:43:07Z2010-102010-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/1851porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:37:35Zoai:ubibliorum.ubi.pt:10400.6/1851Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:43:37.193402Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Métodos numéricos para resolução de equações de Lyapunov
title Métodos numéricos para resolução de equações de Lyapunov
spellingShingle Métodos numéricos para resolução de equações de Lyapunov
Silva, Tiago Filipe Leitão
Métodos numéricos
Equações matriciais
Kronecker
Krylov
title_short Métodos numéricos para resolução de equações de Lyapunov
title_full Métodos numéricos para resolução de equações de Lyapunov
title_fullStr Métodos numéricos para resolução de equações de Lyapunov
title_full_unstemmed Métodos numéricos para resolução de equações de Lyapunov
title_sort Métodos numéricos para resolução de equações de Lyapunov
author Silva, Tiago Filipe Leitão
author_facet Silva, Tiago Filipe Leitão
author_role author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Silva, Tiago Filipe Leitão
dc.subject.por.fl_str_mv Métodos numéricos
Equações matriciais
Kronecker
Krylov
topic Métodos numéricos
Equações matriciais
Kronecker
Krylov
description O objectivo desta dissertação é descrever, analisar e aplicar alguns métodos numéricos para resolver a equação clássica de Lyapunov. Estudamos condições que garantem a solubilidade das equações e estabelecemos relações entre a fórmula contínua AX + X A* + Q = 0 e a fórmula discreta AX A* − X + Q = 0 . O produto de Kronecker é usado de modo a permitir representações de equações matriciais e o desenvolvimento de alguns métodos numéricos Analisamos algumas decomposições matriciais que vão ser utilizadas no desenvolvimento de alguns métodos numéricos directos nomeadamente Bartels-Stewart e Hessenberg-Schur. Por fim, os subespaço de Krylov e alguns processos de ortogonalização permitem desenvolver os métodos iterativos de Arnoldi e GMRES e os métodos directos de Ward e Kirrinnis.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
2010-10-01T00:00:00Z
2014-06-12T10:43:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/1851
url http://hdl.handle.net/10400.6/1851
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade da Beira Interior
publisher.none.fl_str_mv Universidade da Beira Interior
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136335165915136