Churn prediction modeling comparison in the retail energy market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/133072 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_a82d3263cc1d6623bc6168b8d171e1c8 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/133072 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Churn prediction modeling comparison in the retail energy marketData MiningMachine LearningChurn PredictionSupervised LearningRetail EnergyDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceMachine Learning algorithms are used in diverse business cases and different markets. This project has the goal of applying different training models with the purpose of predicting customer churn in a retail energy provider. Following CRISP-DM methodology, the dataset was analyzed, prepared and results were evaluated in order to achieve the best method of forecasting the likelihood of churning in an existent customer base. That information is essential in company’s business planning to maintain and increase its portfolio.Henriques, Roberto André PereiraRUNNogueira, Thiago Sampaio2022-02-17T12:15:28Z2022-01-192022-01-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133072TID:202948218enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:45Zoai:run.unl.pt:10362/133072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:41.744947Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Churn prediction modeling comparison in the retail energy market |
title |
Churn prediction modeling comparison in the retail energy market |
spellingShingle |
Churn prediction modeling comparison in the retail energy market Nogueira, Thiago Sampaio Data Mining Machine Learning Churn Prediction Supervised Learning Retail Energy |
title_short |
Churn prediction modeling comparison in the retail energy market |
title_full |
Churn prediction modeling comparison in the retail energy market |
title_fullStr |
Churn prediction modeling comparison in the retail energy market |
title_full_unstemmed |
Churn prediction modeling comparison in the retail energy market |
title_sort |
Churn prediction modeling comparison in the retail energy market |
author |
Nogueira, Thiago Sampaio |
author_facet |
Nogueira, Thiago Sampaio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Nogueira, Thiago Sampaio |
dc.subject.por.fl_str_mv |
Data Mining Machine Learning Churn Prediction Supervised Learning Retail Energy |
topic |
Data Mining Machine Learning Churn Prediction Supervised Learning Retail Energy |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-17T12:15:28Z 2022-01-19 2022-01-19T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/133072 TID:202948218 |
url |
http://hdl.handle.net/10362/133072 |
identifier_str_mv |
TID:202948218 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138079523471360 |