Churn prediction modeling comparison in the retail energy market

Detalhes bibliográficos
Autor(a) principal: Nogueira, Thiago Sampaio
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/133072
Resumo: Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence
id RCAP_a82d3263cc1d6623bc6168b8d171e1c8
oai_identifier_str oai:run.unl.pt:10362/133072
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Churn prediction modeling comparison in the retail energy marketData MiningMachine LearningChurn PredictionSupervised LearningRetail EnergyDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceMachine Learning algorithms are used in diverse business cases and different markets. This project has the goal of applying different training models with the purpose of predicting customer churn in a retail energy provider. Following CRISP-DM methodology, the dataset was analyzed, prepared and results were evaluated in order to achieve the best method of forecasting the likelihood of churning in an existent customer base. That information is essential in company’s business planning to maintain and increase its portfolio.Henriques, Roberto André PereiraRUNNogueira, Thiago Sampaio2022-02-17T12:15:28Z2022-01-192022-01-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133072TID:202948218enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:45Zoai:run.unl.pt:10362/133072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:41.744947Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Churn prediction modeling comparison in the retail energy market
title Churn prediction modeling comparison in the retail energy market
spellingShingle Churn prediction modeling comparison in the retail energy market
Nogueira, Thiago Sampaio
Data Mining
Machine Learning
Churn Prediction
Supervised Learning
Retail Energy
title_short Churn prediction modeling comparison in the retail energy market
title_full Churn prediction modeling comparison in the retail energy market
title_fullStr Churn prediction modeling comparison in the retail energy market
title_full_unstemmed Churn prediction modeling comparison in the retail energy market
title_sort Churn prediction modeling comparison in the retail energy market
author Nogueira, Thiago Sampaio
author_facet Nogueira, Thiago Sampaio
author_role author
dc.contributor.none.fl_str_mv Henriques, Roberto André Pereira
RUN
dc.contributor.author.fl_str_mv Nogueira, Thiago Sampaio
dc.subject.por.fl_str_mv Data Mining
Machine Learning
Churn Prediction
Supervised Learning
Retail Energy
topic Data Mining
Machine Learning
Churn Prediction
Supervised Learning
Retail Energy
description Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence
publishDate 2022
dc.date.none.fl_str_mv 2022-02-17T12:15:28Z
2022-01-19
2022-01-19T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/133072
TID:202948218
url http://hdl.handle.net/10362/133072
identifier_str_mv TID:202948218
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138079523471360