An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries

Detalhes bibliográficos
Autor(a) principal: Castro, Cecília
Data de Publicação: 2023
Outros Autores: Leiva, Víctor, Alcudia, Esdras, Montano, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/85429
Resumo: In this research, we investigate the COVID-19 spread in Latin American countries using time-series and epidemic models. We highlight the diverse outbreak patterns and the crucial role of the reproduction number in modeling pandemic scenarios. Our findings underscore the need for ongoing epidemic surveillance and accurate data handling.
id RCAP_69df965eea5fbe00e160f466c98a170b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/85429
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countriesData scienceEpidemic modelsReproduction numberSARS-CoV-2Time-series modelsCiências Naturais::MatemáticasSaúde de qualidadeIn this research, we investigate the COVID-19 spread in Latin American countries using time-series and epidemic models. We highlight the diverse outbreak patterns and the crucial role of the reproduction number in modeling pandemic scenarios. Our findings underscore the need for ongoing epidemic surveillance and accurate data handling.ANCD -Agenția Națională pentru Cercetare și Dezvoltare(1200525)MDPIUniversidade do MinhoCastro, CecíliaLeiva, VíctorAlcudia, EsdrasMontano, J.2023-06-202023-06-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85429eng2079-773710.3390/biology12060887https://www.mdpi.com/2079-7737/12/6/887info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-12T01:17:39Zoai:repositorium.sdum.uminho.pt:1822/85429Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:20:28.057731Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
title An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
spellingShingle An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
Castro, Cecília
Data science
Epidemic models
Reproduction number
SARS-CoV-2
Time-series models
Ciências Naturais::Matemáticas
Saúde de qualidade
title_short An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
title_full An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
title_fullStr An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
title_full_unstemmed An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
title_sort An epidemiological analysis for assessing and evaluating COVID-19 based on data analytics in latin American countries
author Castro, Cecília
author_facet Castro, Cecília
Leiva, Víctor
Alcudia, Esdras
Montano, J.
author_role author
author2 Leiva, Víctor
Alcudia, Esdras
Montano, J.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Castro, Cecília
Leiva, Víctor
Alcudia, Esdras
Montano, J.
dc.subject.por.fl_str_mv Data science
Epidemic models
Reproduction number
SARS-CoV-2
Time-series models
Ciências Naturais::Matemáticas
Saúde de qualidade
topic Data science
Epidemic models
Reproduction number
SARS-CoV-2
Time-series models
Ciências Naturais::Matemáticas
Saúde de qualidade
description In this research, we investigate the COVID-19 spread in Latin American countries using time-series and epidemic models. We highlight the diverse outbreak patterns and the crucial role of the reproduction number in modeling pandemic scenarios. Our findings underscore the need for ongoing epidemic surveillance and accurate data handling.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-20
2023-06-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/85429
url https://hdl.handle.net/1822/85429
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2079-7737
10.3390/biology12060887
https://www.mdpi.com/2079-7737/12/6/887
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132667221901312