Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion

Detalhes bibliográficos
Autor(a) principal: Silva, Pedro Miguel Peixoto
Data de Publicação: 2024
Outros Autores: Neto, Mafalda D, Cerqueira, Miguel Ângelo Parente Ribeiro, Rodriguez, Isabel, Bourbon, Ana Isabel Juncá Sottomayor Lisboa, Azevedo, Ana Gabriela, Pastrana, Lorenzo M, Coimbra, Manuel A, Vicente, A. A., Gonçalves, Catarina
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/89371
Resumo: Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.
id RCAP_69e70f5989fbe4e61a621a4444d87145
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/89371
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestionHumansEmulsionsResveratrolHypromellose DerivativesCaco-2 CellsStarchDigestionAntioxidantsSuccinic AnhydridesHydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020 and LAQV/REQUIMTE (UIDB/50006/2020, UIDP/50006/2020). This work was funded by the SbDtoolBox - Nanotechnology-based tools and tests for Safer-by-Design nanomaterials, with the reference NORTE-01-0145-FEDER-000047, funded by Norte 2020 – North-Regional Operational Program under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The research also received funding from the European Union's H2020 research and innovation program under the Marie Sklodowska-Curie grant agreement N 778388 (H2020 MSCA-RISE-2017 project Food for Diabetes and Cognition (FODIAC), and grant agreement N 713640 (MSCA-2015-COFUND-FP). Pedro Silva is the recipient of a fellowship (SFRD/BD/130247/2017) supported by Fundação para a Ciência e a Tecnologia, (FCT, Portugal). Ana Isabel Bourbon acknowledges funding by FCT, through the individual scientific employment program contract (2020.03447.CEECIND). We also would like to thank the Advanced Electron Microscopy, Imaging, and Spectroscopy (AEMIS) and the Nanophotonics and Bioimaging Facility (NBI) from INL for their support.ElsevierUniversidade do MinhoSilva, Pedro Miguel PeixotoNeto, Mafalda DCerqueira, Miguel Ângelo Parente RibeiroRodriguez, IsabelBourbon, Ana Isabel Juncá Sottomayor LisboaAzevedo, Ana GabrielaPastrana, Lorenzo MCoimbra, Manuel AVicente, A. A.Gonçalves, Catarina2024-022024-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/89371engSilva, P. M., Neto, M. D., Cerqueira, M. A., Rodriguez, I., Bourbon, A. I., Azevedo, A. G., … Gonçalves, C. (2024, February). Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion. International Journal of Biological Macromolecules. Elsevier BV. http://doi.org/10.1016/j.ijbiomac.2024.1292880141-813010.1016/j.ijbiomac.2024.129288https://www.sciencedirect.com/science/article/pii/S0141813024000916info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-09T01:20:10Zoai:repositorium.sdum.uminho.pt:1822/89371Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:14:01.061836Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
title Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
spellingShingle Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
Silva, Pedro Miguel Peixoto
Humans
Emulsions
Resveratrol
Hypromellose Derivatives
Caco-2 Cells
Starch
Digestion
Antioxidants
Succinic Anhydrides
title_short Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
title_full Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
title_fullStr Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
title_full_unstemmed Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
title_sort Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion
author Silva, Pedro Miguel Peixoto
author_facet Silva, Pedro Miguel Peixoto
Neto, Mafalda D
Cerqueira, Miguel Ângelo Parente Ribeiro
Rodriguez, Isabel
Bourbon, Ana Isabel Juncá Sottomayor Lisboa
Azevedo, Ana Gabriela
Pastrana, Lorenzo M
Coimbra, Manuel A
Vicente, A. A.
Gonçalves, Catarina
author_role author
author2 Neto, Mafalda D
Cerqueira, Miguel Ângelo Parente Ribeiro
Rodriguez, Isabel
Bourbon, Ana Isabel Juncá Sottomayor Lisboa
Azevedo, Ana Gabriela
Pastrana, Lorenzo M
Coimbra, Manuel A
Vicente, A. A.
Gonçalves, Catarina
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Silva, Pedro Miguel Peixoto
Neto, Mafalda D
Cerqueira, Miguel Ângelo Parente Ribeiro
Rodriguez, Isabel
Bourbon, Ana Isabel Juncá Sottomayor Lisboa
Azevedo, Ana Gabriela
Pastrana, Lorenzo M
Coimbra, Manuel A
Vicente, A. A.
Gonçalves, Catarina
dc.subject.por.fl_str_mv Humans
Emulsions
Resveratrol
Hypromellose Derivatives
Caco-2 Cells
Starch
Digestion
Antioxidants
Succinic Anhydrides
topic Humans
Emulsions
Resveratrol
Hypromellose Derivatives
Caco-2 Cells
Starch
Digestion
Antioxidants
Succinic Anhydrides
description Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.
publishDate 2024
dc.date.none.fl_str_mv 2024-02
2024-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/89371
url https://hdl.handle.net/1822/89371
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Silva, P. M., Neto, M. D., Cerqueira, M. A., Rodriguez, I., Bourbon, A. I., Azevedo, A. G., … Gonçalves, C. (2024, February). Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion. International Journal of Biological Macromolecules. Elsevier BV. http://doi.org/10.1016/j.ijbiomac.2024.129288
0141-8130
10.1016/j.ijbiomac.2024.129288
https://www.sciencedirect.com/science/article/pii/S0141813024000916
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137793663827968