Infinitely many nodal solutions for anisotropic (p, q)-equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35310 |
Resumo: | We consider an anisotropic (p.q)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in C1Ω. |
id |
RCAP_74c21c1952e787a767e1e3b1edcb04e7 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35310 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Infinitely many nodal solutions for anisotropic (p, q)-equationsVariable exponent spaceExtremal constant sign solutionsNodal solutionsTruncationRegularity theoryMaximum principleWe consider an anisotropic (p.q)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in C1Ω.Yokohama Publishers2022-11-25T15:15:34Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35310eng2189-3756Aizicovici, SergiuPapageorgiou, NikolaosStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:58Zoai:ria.ua.pt:10773/35310Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:21.301865Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
title |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
spellingShingle |
Infinitely many nodal solutions for anisotropic (p, q)-equations Aizicovici, Sergiu Variable exponent space Extremal constant sign solutions Nodal solutions Truncation Regularity theory Maximum principle |
title_short |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
title_full |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
title_fullStr |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
title_full_unstemmed |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
title_sort |
Infinitely many nodal solutions for anisotropic (p, q)-equations |
author |
Aizicovici, Sergiu |
author_facet |
Aizicovici, Sergiu Papageorgiou, Nikolaos Staicu, Vasile |
author_role |
author |
author2 |
Papageorgiou, Nikolaos Staicu, Vasile |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aizicovici, Sergiu Papageorgiou, Nikolaos Staicu, Vasile |
dc.subject.por.fl_str_mv |
Variable exponent space Extremal constant sign solutions Nodal solutions Truncation Regularity theory Maximum principle |
topic |
Variable exponent space Extremal constant sign solutions Nodal solutions Truncation Regularity theory Maximum principle |
description |
We consider an anisotropic (p.q)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in C1Ω. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-25T15:15:34Z 2022-01-01T00:00:00Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35310 |
url |
http://hdl.handle.net/10773/35310 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2189-3756 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Yokohama Publishers |
publisher.none.fl_str_mv |
Yokohama Publishers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137718886727680 |