Infinitely many nodal solutions for anisotropic (p, q)-equations

Detalhes bibliográficos
Autor(a) principal: Aizicovici, Sergiu
Data de Publicação: 2022
Outros Autores: Papageorgiou, Nikolaos, Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35310
Resumo: We consider an anisotropic (p.q)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in C1Ω.
id RCAP_74c21c1952e787a767e1e3b1edcb04e7
oai_identifier_str oai:ria.ua.pt:10773/35310
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Infinitely many nodal solutions for anisotropic (p, q)-equationsVariable exponent spaceExtremal constant sign solutionsNodal solutionsTruncationRegularity theoryMaximum principleWe consider an anisotropic (p.q)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in C1Ω.Yokohama Publishers2022-11-25T15:15:34Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35310eng2189-3756Aizicovici, SergiuPapageorgiou, NikolaosStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:58Zoai:ria.ua.pt:10773/35310Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:21.301865Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Infinitely many nodal solutions for anisotropic (p, q)-equations
title Infinitely many nodal solutions for anisotropic (p, q)-equations
spellingShingle Infinitely many nodal solutions for anisotropic (p, q)-equations
Aizicovici, Sergiu
Variable exponent space
Extremal constant sign solutions
Nodal solutions
Truncation
Regularity theory
Maximum principle
title_short Infinitely many nodal solutions for anisotropic (p, q)-equations
title_full Infinitely many nodal solutions for anisotropic (p, q)-equations
title_fullStr Infinitely many nodal solutions for anisotropic (p, q)-equations
title_full_unstemmed Infinitely many nodal solutions for anisotropic (p, q)-equations
title_sort Infinitely many nodal solutions for anisotropic (p, q)-equations
author Aizicovici, Sergiu
author_facet Aizicovici, Sergiu
Papageorgiou, Nikolaos
Staicu, Vasile
author_role author
author2 Papageorgiou, Nikolaos
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Aizicovici, Sergiu
Papageorgiou, Nikolaos
Staicu, Vasile
dc.subject.por.fl_str_mv Variable exponent space
Extremal constant sign solutions
Nodal solutions
Truncation
Regularity theory
Maximum principle
topic Variable exponent space
Extremal constant sign solutions
Nodal solutions
Truncation
Regularity theory
Maximum principle
description We consider an anisotropic (p.q)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in C1Ω.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-25T15:15:34Z
2022-01-01T00:00:00Z
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35310
url http://hdl.handle.net/10773/35310
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2189-3756
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Yokohama Publishers
publisher.none.fl_str_mv Yokohama Publishers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137718886727680