Evolutionary neural network learning algorithms for changing environments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/426 |
Resumo: | Classical Machine Learning methods are usually developed to work in static data sets. Yet, real world data typically changes over time and there is the need to develop novel adaptive learning algorithms. In this work, a number of algorithms, combining Neural Network learning models and Evolutionary Computation optimization techniques, are compared, being held several simulations based on artificial and real world problems. The results favor the combination of evolution and lifetime learning according to the Baldwin effect framework. |
id |
RCAP_75a30c555faa289caeef3f3536942dc6 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/426 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evolutionary neural network learning algorithms for changing environmentsBaldwinian and Lamarckian effectsEvolutionary programmingMultilayer perceptronsClassical Machine Learning methods are usually developed to work in static data sets. Yet, real world data typically changes over time and there is the need to develop novel adaptive learning algorithms. In this work, a number of algorithms, combining Neural Network learning models and Evolutionary Computation optimization techniques, are compared, being held several simulations based on artificial and real world problems. The results favor the combination of evolution and lifetime learning according to the Baldwin effect framework.World Scientific and Engineering Academy and Society (WSEAS)Universidade do MinhoRocha, MiguelCortez, PauloNeves, José2004-042004-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/426eng“WSEAS Transactions on Systems”. ISSN 1109-2777. 3:2 (2004) 596-601.1109-2777info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:53:20Zoai:repositorium.sdum.uminho.pt:1822/426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:52:41.441732Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evolutionary neural network learning algorithms for changing environments |
title |
Evolutionary neural network learning algorithms for changing environments |
spellingShingle |
Evolutionary neural network learning algorithms for changing environments Rocha, Miguel Baldwinian and Lamarckian effects Evolutionary programming Multilayer perceptrons |
title_short |
Evolutionary neural network learning algorithms for changing environments |
title_full |
Evolutionary neural network learning algorithms for changing environments |
title_fullStr |
Evolutionary neural network learning algorithms for changing environments |
title_full_unstemmed |
Evolutionary neural network learning algorithms for changing environments |
title_sort |
Evolutionary neural network learning algorithms for changing environments |
author |
Rocha, Miguel |
author_facet |
Rocha, Miguel Cortez, Paulo Neves, José |
author_role |
author |
author2 |
Cortez, Paulo Neves, José |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rocha, Miguel Cortez, Paulo Neves, José |
dc.subject.por.fl_str_mv |
Baldwinian and Lamarckian effects Evolutionary programming Multilayer perceptrons |
topic |
Baldwinian and Lamarckian effects Evolutionary programming Multilayer perceptrons |
description |
Classical Machine Learning methods are usually developed to work in static data sets. Yet, real world data typically changes over time and there is the need to develop novel adaptive learning algorithms. In this work, a number of algorithms, combining Neural Network learning models and Evolutionary Computation optimization techniques, are compared, being held several simulations based on artificial and real world problems. The results favor the combination of evolution and lifetime learning according to the Baldwin effect framework. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-04 2004-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/426 |
url |
http://hdl.handle.net/1822/426 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
“WSEAS Transactions on Systems”. ISSN 1109-2777. 3:2 (2004) 596-601. 1109-2777 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific and Engineering Academy and Society (WSEAS) |
publisher.none.fl_str_mv |
World Scientific and Engineering Academy and Society (WSEAS) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133120308445184 |