A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/31229 |
Resumo: | Recently, the authors developed a matrix approach to multivariate polynomial sequences by using methods of Hypercomplex Function Theory ("Matrix representations of a basic polynomial sequence in arbitrary dimension". Comput. Methods Funct. Theory, 12 (2012), no. 2, 371-391). This paper deals with an extension of that approach to a recurrence relation for the construction of a complete system of orthogonal Clifford-algebra valued polynomials of arbitrary degree. At the same time the matrix approach sheds new light on results about systems of Clifford algebra-valued orthogonal polynomials obtained by Guerlebeck, Bock, Lavicka, Delanghe et al. during the last five years. In fact, it allows to prove directly some intrinsic properties of the building blocks essential in the construction process, but not studied so far. |
id |
RCAP_7617a4f4f7a2890cf572b082e03cef52 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/31229 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomialsClifford AnalysisGeneralized Appell polynomialsRecurrence relationsScience & TechnologyRecently, the authors developed a matrix approach to multivariate polynomial sequences by using methods of Hypercomplex Function Theory ("Matrix representations of a basic polynomial sequence in arbitrary dimension". Comput. Methods Funct. Theory, 12 (2012), no. 2, 371-391). This paper deals with an extension of that approach to a recurrence relation for the construction of a complete system of orthogonal Clifford-algebra valued polynomials of arbitrary degree. At the same time the matrix approach sheds new light on results about systems of Clifford algebra-valued orthogonal polynomials obtained by Guerlebeck, Bock, Lavicka, Delanghe et al. during the last five years. In fact, it allows to prove directly some intrinsic properties of the building blocks essential in the construction process, but not studied so far.Fundação para a Ciência e a Tecnologia (FCT)Springer VerlagUniversidade do MinhoCação, I.Falcão, M. I.Malonek, H. R.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/31229eng0188-700910.1007/s00006-014-0505-xhttp://link.springer.cominfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:29:04Zoai:repositorium.sdum.uminho.pt:1822/31229Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:23:59.029143Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
title |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
spellingShingle |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials Cação, I. Clifford Analysis Generalized Appell polynomials Recurrence relations Science & Technology |
title_short |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
title_full |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
title_fullStr |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
title_full_unstemmed |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
title_sort |
A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials |
author |
Cação, I. |
author_facet |
Cação, I. Falcão, M. I. Malonek, H. R. |
author_role |
author |
author2 |
Falcão, M. I. Malonek, H. R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cação, I. Falcão, M. I. Malonek, H. R. |
dc.subject.por.fl_str_mv |
Clifford Analysis Generalized Appell polynomials Recurrence relations Science & Technology |
topic |
Clifford Analysis Generalized Appell polynomials Recurrence relations Science & Technology |
description |
Recently, the authors developed a matrix approach to multivariate polynomial sequences by using methods of Hypercomplex Function Theory ("Matrix representations of a basic polynomial sequence in arbitrary dimension". Comput. Methods Funct. Theory, 12 (2012), no. 2, 371-391). This paper deals with an extension of that approach to a recurrence relation for the construction of a complete system of orthogonal Clifford-algebra valued polynomials of arbitrary degree. At the same time the matrix approach sheds new light on results about systems of Clifford algebra-valued orthogonal polynomials obtained by Guerlebeck, Bock, Lavicka, Delanghe et al. during the last five years. In fact, it allows to prove directly some intrinsic properties of the building blocks essential in the construction process, but not studied so far. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/31229 |
url |
http://hdl.handle.net/1822/31229 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0188-7009 10.1007/s00006-014-0505-x http://link.springer.com |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132717531529216 |