On paravector valued homogeneous monogenic polynomials with binomial expansion

Detalhes bibliográficos
Autor(a) principal: Malonek, H. R.
Data de Publicação: 2012
Outros Autores: Falcão, M. I.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/20135
Resumo: The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.
id RCAP_e32dd1184244a58af3ed6fce8bb1c6b0
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20135
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On paravector valued homogeneous monogenic polynomials with binomial expansionClifford AnalysisGeneralized Appell polynomialsgeneralized Appell polynomialScience & TechnologyThe aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.Fundação para a Ciência e a Tecnologia (FCT)SpringerUniversidade do MinhoMalonek, H. R.Falcão, M. I.20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20135eng0188-700910.1007/s00006-012-0361-5http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00006-012-0361-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:31:57Zoai:repositorium.sdum.uminho.pt:1822/20135Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:15.822118Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On paravector valued homogeneous monogenic polynomials with binomial expansion
title On paravector valued homogeneous monogenic polynomials with binomial expansion
spellingShingle On paravector valued homogeneous monogenic polynomials with binomial expansion
Malonek, H. R.
Clifford Analysis
Generalized Appell polynomials
generalized Appell polynomial
Science & Technology
title_short On paravector valued homogeneous monogenic polynomials with binomial expansion
title_full On paravector valued homogeneous monogenic polynomials with binomial expansion
title_fullStr On paravector valued homogeneous monogenic polynomials with binomial expansion
title_full_unstemmed On paravector valued homogeneous monogenic polynomials with binomial expansion
title_sort On paravector valued homogeneous monogenic polynomials with binomial expansion
author Malonek, H. R.
author_facet Malonek, H. R.
Falcão, M. I.
author_role author
author2 Falcão, M. I.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Malonek, H. R.
Falcão, M. I.
dc.subject.por.fl_str_mv Clifford Analysis
Generalized Appell polynomials
generalized Appell polynomial
Science & Technology
topic Clifford Analysis
Generalized Appell polynomials
generalized Appell polynomial
Science & Technology
description The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/20135
url http://hdl.handle.net/1822/20135
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0188-7009
10.1007/s00006-012-0361-5
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00006-012-0361-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132763641610240