On paravector valued homogeneous monogenic polynomials with binomial expansion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/20135 |
Resumo: | The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables. |
id |
RCAP_e32dd1184244a58af3ed6fce8bb1c6b0 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/20135 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On paravector valued homogeneous monogenic polynomials with binomial expansionClifford AnalysisGeneralized Appell polynomialsgeneralized Appell polynomialScience & TechnologyThe aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.Fundação para a Ciência e a Tecnologia (FCT)SpringerUniversidade do MinhoMalonek, H. R.Falcão, M. I.20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20135eng0188-700910.1007/s00006-012-0361-5http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00006-012-0361-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:31:57Zoai:repositorium.sdum.uminho.pt:1822/20135Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:15.822118Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
spellingShingle |
On paravector valued homogeneous monogenic polynomials with binomial expansion Malonek, H. R. Clifford Analysis Generalized Appell polynomials generalized Appell polynomial Science & Technology |
title_short |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_full |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_fullStr |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_full_unstemmed |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_sort |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
author |
Malonek, H. R. |
author_facet |
Malonek, H. R. Falcão, M. I. |
author_role |
author |
author2 |
Falcão, M. I. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Malonek, H. R. Falcão, M. I. |
dc.subject.por.fl_str_mv |
Clifford Analysis Generalized Appell polynomials generalized Appell polynomial Science & Technology |
topic |
Clifford Analysis Generalized Appell polynomials generalized Appell polynomial Science & Technology |
description |
The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/20135 |
url |
http://hdl.handle.net/1822/20135 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0188-7009 10.1007/s00006-012-0361-5 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00006-012-0361-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132763641610240 |