On paravector valued homogeneous monogenic polynomials with binomial expansion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15317 |
Resumo: | The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables. |
id |
RCAP_7a704d475fecbfcaae6b8dfdf8c8ca0e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15317 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On paravector valued homogeneous monogenic polynomials with binomial expansionClifford analysisGeneralized Appell polynomialThe aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.SP Birkhäuser Verlag Basel2016-03-16T16:39:19Z2012-09-01T00:00:00Z2012-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15317eng0188-700910.1007/s00006-012-0361-5Malonek, Helmuth RobertFalcão, Maria Ireneinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:07Zoai:ria.ua.pt:10773/15317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:38.152786Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
spellingShingle |
On paravector valued homogeneous monogenic polynomials with binomial expansion Malonek, Helmuth Robert Clifford analysis Generalized Appell polynomial |
title_short |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_full |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_fullStr |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_full_unstemmed |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_sort |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
author |
Malonek, Helmuth Robert |
author_facet |
Malonek, Helmuth Robert Falcão, Maria Irene |
author_role |
author |
author2 |
Falcão, Maria Irene |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Malonek, Helmuth Robert Falcão, Maria Irene |
dc.subject.por.fl_str_mv |
Clifford analysis Generalized Appell polynomial |
topic |
Clifford analysis Generalized Appell polynomial |
description |
The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09-01T00:00:00Z 2012-09 2016-03-16T16:39:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15317 |
url |
http://hdl.handle.net/10773/15317 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0188-7009 10.1007/s00006-012-0361-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SP Birkhäuser Verlag Basel |
publisher.none.fl_str_mv |
SP Birkhäuser Verlag Basel |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137556550385664 |