A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives

Detalhes bibliográficos
Autor(a) principal: Rocha, Sónia
Data de Publicação: 2018
Outros Autores: Sousa, Adelaide, Ribeiro, Daniela, Correia, Catarina M., Silva, Vera L.M., Santos, Clementina, Silva, Artur, Araújo, Alberto N., Fernandes, Eduarda, Freitas, Marisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/20264
Resumo: The inhibition of carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, is one of the major therapeutic strategies for the treatment of type 2 diabetes mellitus. Chalcones have been recognized for their multiple biological activities, including antidiabetic properties, through unclear mechanisms. In the present work, a panel of chalcones bearing hydroxy, methoxy, methyl, nitro, chloro, fluoro and bromo substituents were evaluated against α-amylase and α-glucosidase activities, most of them for the first time. The results showed that the substitution patterns and the type of substituents of chalcones influence their inhibitory activity. The presence of hydroxy groups at C-2’- and C-4’ of the A ring and at C-3 and C-4 of the B ring favors the intended effect. Chalcones holding nitro groups and chloro substituents, together with a hydroxy group in the chalcone scaffold, showed strong inhibition of the α-glucosidase activity. The present study provides related scaffolds that may serve as the basis for the design and synthesis of new structures in order to obtain the ideal antidiabetic chalcone.
id RCAP_77f718fbcc8d41600b0515149a29f2cb
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/20264
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivativesThe inhibition of carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, is one of the major therapeutic strategies for the treatment of type 2 diabetes mellitus. Chalcones have been recognized for their multiple biological activities, including antidiabetic properties, through unclear mechanisms. In the present work, a panel of chalcones bearing hydroxy, methoxy, methyl, nitro, chloro, fluoro and bromo substituents were evaluated against α-amylase and α-glucosidase activities, most of them for the first time. The results showed that the substitution patterns and the type of substituents of chalcones influence their inhibitory activity. The presence of hydroxy groups at C-2’- and C-4’ of the A ring and at C-3 and C-4 of the B ring favors the intended effect. Chalcones holding nitro groups and chloro substituents, together with a hydroxy group in the chalcone scaffold, showed strong inhibition of the α-glucosidase activity. The present study provides related scaffolds that may serve as the basis for the design and synthesis of new structures in order to obtain the ideal antidiabetic chalcone.This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2013, and “Programa Operacional Competitividade e Internacionalização” (COMPETE) (POCI-01-0145-FEDER-029241). Thanks are due to University of Aveiro, Instituto Politécnico de Bragança, FCT/ MEC for the financial support to the QOPNA (FCT UID/QUI/ 00062/2013) and CIMO (UID/AGR/00690/2013) research Units through national funds and where applicable co-financed by the FEDER, within the PT2020 Partnership Agreement, and also to the Portuguese NMR Network. Sónia Rocha acknowledges FCT the financial support for the PhD grant (PD/BD/ 145169/2019), in the ambit of “QREN – POPH – Tipologia 4.1 – Formação Avançada”, co-sponsored by Fundo Social Europeu (FSE) and by national funds of Ministério da Ciência, Tecnologia e Ensino Superior (MCTES).Biblioteca Digital do IPBRocha, SóniaSousa, AdelaideRibeiro, DanielaCorreia, Catarina M.Silva, Vera L.M.Santos, ClementinaSilva, ArturAraújo, Alberto N.Fernandes, EduardaFreitas, Marisa2018-01-19T10:00:00Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/20264engRocha, Sónia; Sousa, Adelaide; Ribeiro, Daniela; Correia, Catarina M.; Silva, Vera L.M.; Santos, Clementina M.M.; Silva, Artur M.S.; Araújo, Alberto N.; Fernandes, Eduarda; Freitas, Marisa (2019). A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food and Function. ISSN 2042-6496. 10, p. 5510-55202042-649610.1039/c9fo01298binfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:46:10Zoai:bibliotecadigital.ipb.pt:10198/20264Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:11:03.375093Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
title A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
spellingShingle A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
Rocha, Sónia
title_short A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
title_full A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
title_fullStr A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
title_full_unstemmed A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
title_sort A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives
author Rocha, Sónia
author_facet Rocha, Sónia
Sousa, Adelaide
Ribeiro, Daniela
Correia, Catarina M.
Silva, Vera L.M.
Santos, Clementina
Silva, Artur
Araújo, Alberto N.
Fernandes, Eduarda
Freitas, Marisa
author_role author
author2 Sousa, Adelaide
Ribeiro, Daniela
Correia, Catarina M.
Silva, Vera L.M.
Santos, Clementina
Silva, Artur
Araújo, Alberto N.
Fernandes, Eduarda
Freitas, Marisa
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Rocha, Sónia
Sousa, Adelaide
Ribeiro, Daniela
Correia, Catarina M.
Silva, Vera L.M.
Santos, Clementina
Silva, Artur
Araújo, Alberto N.
Fernandes, Eduarda
Freitas, Marisa
description The inhibition of carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, is one of the major therapeutic strategies for the treatment of type 2 diabetes mellitus. Chalcones have been recognized for their multiple biological activities, including antidiabetic properties, through unclear mechanisms. In the present work, a panel of chalcones bearing hydroxy, methoxy, methyl, nitro, chloro, fluoro and bromo substituents were evaluated against α-amylase and α-glucosidase activities, most of them for the first time. The results showed that the substitution patterns and the type of substituents of chalcones influence their inhibitory activity. The presence of hydroxy groups at C-2’- and C-4’ of the A ring and at C-3 and C-4 of the B ring favors the intended effect. Chalcones holding nitro groups and chloro substituents, together with a hydroxy group in the chalcone scaffold, showed strong inhibition of the α-glucosidase activity. The present study provides related scaffolds that may serve as the basis for the design and synthesis of new structures in order to obtain the ideal antidiabetic chalcone.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-19T10:00:00Z
2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/20264
url http://hdl.handle.net/10198/20264
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Rocha, Sónia; Sousa, Adelaide; Ribeiro, Daniela; Correia, Catarina M.; Silva, Vera L.M.; Santos, Clementina M.M.; Silva, Artur M.S.; Araújo, Alberto N.; Fernandes, Eduarda; Freitas, Marisa (2019). A study towards drug discovery for the management of type 2 diabetes: Mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food and Function. ISSN 2042-6496. 10, p. 5510-5520
2042-6496
10.1039/c9fo01298b
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135377477337088