Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models

Detalhes bibliográficos
Autor(a) principal: Morais, Hermes Manuel Medina
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/111128
Resumo: Amyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the degeneration of upper (cortical) and lower (spinal cord, SC) motor neurons (MNs) and aberrancy of glial cells. Results from our group point to a close connection between increased levels of miRNA-124 and the acquisition of pathological characteristics in MNs, astrocytes and microglia in ALS. Our main aim was to validate if the downregulation of the elevated levels of miR-124 in hSOD1G93A (mSOD1) MNs toward normal levels was preventive over neurodegeneration, astrocyte aberrancies and microglia activation in the mSOD1 mice at the early onset of the disease (10-12 weeks). Two ALS models were used: the NSC-34 MN-like cell line expressing mSOD1 (transgenic, TG) or not (wild-type, WT); and the SC organotypic cultures (OCs) from WT and TG mice. Pathological differences between TG and WT SCOCs were investigated. Relatively to the MN models, we used the modulation with pre-miR-124 (only in WT) and that of anti-miR-124 (only in the TG). The isolated secretomes were incubated in WT and TG SCOCs to assess harmful and/or neuroprotective properties. In TG SCOCs we observed: (i) increased necrotic cell death; (ii) disturbed inflammatory-associated miRNAs (increase in miR-21/miR-146a); (iii) and dysregulated neuronal and glial genes (increased CX3CR1, IL-1β, IL-10, SYP, DRP1, GLT-1 and downregulation of iNOS, HMGB1, Dlg4, CX3CL1 and GFAP). WT-MN secretome counteracted pathological markers in TG SCOCs. In contrast, TG MN secretome induced deleterious effects in WT SCOCs. Secretome from miR-124-enriched WT MNs incubated in WT SCOCs led to a profile of miRNAs and protein-coding genes similar to that caused by the TG MN secretome. On the contrary, the secretome from TG MNs depleted in miR-124 restored a deactivated profile in TG SCOCs. Our data reveals MN upregulation of miR-124 as a key player in ALS pathological processes.
id RCAP_7aedf5c7e773b608bb2024d5e32c03c7
oai_identifier_str oai:run.unl.pt:10362/111128
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse modelsAmyotrophic lateral sclerosisMotor neuronGlial cellsmiR-124 modulationSecretomeSpinal cord organotypic culturesDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasAmyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the degeneration of upper (cortical) and lower (spinal cord, SC) motor neurons (MNs) and aberrancy of glial cells. Results from our group point to a close connection between increased levels of miRNA-124 and the acquisition of pathological characteristics in MNs, astrocytes and microglia in ALS. Our main aim was to validate if the downregulation of the elevated levels of miR-124 in hSOD1G93A (mSOD1) MNs toward normal levels was preventive over neurodegeneration, astrocyte aberrancies and microglia activation in the mSOD1 mice at the early onset of the disease (10-12 weeks). Two ALS models were used: the NSC-34 MN-like cell line expressing mSOD1 (transgenic, TG) or not (wild-type, WT); and the SC organotypic cultures (OCs) from WT and TG mice. Pathological differences between TG and WT SCOCs were investigated. Relatively to the MN models, we used the modulation with pre-miR-124 (only in WT) and that of anti-miR-124 (only in the TG). The isolated secretomes were incubated in WT and TG SCOCs to assess harmful and/or neuroprotective properties. In TG SCOCs we observed: (i) increased necrotic cell death; (ii) disturbed inflammatory-associated miRNAs (increase in miR-21/miR-146a); (iii) and dysregulated neuronal and glial genes (increased CX3CR1, IL-1β, IL-10, SYP, DRP1, GLT-1 and downregulation of iNOS, HMGB1, Dlg4, CX3CL1 and GFAP). WT-MN secretome counteracted pathological markers in TG SCOCs. In contrast, TG MN secretome induced deleterious effects in WT SCOCs. Secretome from miR-124-enriched WT MNs incubated in WT SCOCs led to a profile of miRNAs and protein-coding genes similar to that caused by the TG MN secretome. On the contrary, the secretome from TG MNs depleted in miR-124 restored a deactivated profile in TG SCOCs. Our data reveals MN upregulation of miR-124 as a key player in ALS pathological processes.Casa da Misericórdia de Lisboa (SCML), project ref. ALSResearch Grant ELA-2015-002Brites, DoraBotelho, Ana RitaBraga, MargaridaRUNMorais, Hermes Manuel Medina2023-12-02T01:30:47Z2021-01-1120202021-01-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/111128enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:54:56Zoai:run.unl.pt:10362/111128Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:48.518563Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
title Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
spellingShingle Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
Morais, Hermes Manuel Medina
Amyotrophic lateral sclerosis
Motor neuron
Glial cells
miR-124 modulation
Secretome
Spinal cord organotypic cultures
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
title_full Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
title_fullStr Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
title_full_unstemmed Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
title_sort Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models
author Morais, Hermes Manuel Medina
author_facet Morais, Hermes Manuel Medina
author_role author
dc.contributor.none.fl_str_mv Brites, Dora
Botelho, Ana Rita
Braga, Margarida
RUN
dc.contributor.author.fl_str_mv Morais, Hermes Manuel Medina
dc.subject.por.fl_str_mv Amyotrophic lateral sclerosis
Motor neuron
Glial cells
miR-124 modulation
Secretome
Spinal cord organotypic cultures
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Amyotrophic lateral sclerosis
Motor neuron
Glial cells
miR-124 modulation
Secretome
Spinal cord organotypic cultures
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Amyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the degeneration of upper (cortical) and lower (spinal cord, SC) motor neurons (MNs) and aberrancy of glial cells. Results from our group point to a close connection between increased levels of miRNA-124 and the acquisition of pathological characteristics in MNs, astrocytes and microglia in ALS. Our main aim was to validate if the downregulation of the elevated levels of miR-124 in hSOD1G93A (mSOD1) MNs toward normal levels was preventive over neurodegeneration, astrocyte aberrancies and microglia activation in the mSOD1 mice at the early onset of the disease (10-12 weeks). Two ALS models were used: the NSC-34 MN-like cell line expressing mSOD1 (transgenic, TG) or not (wild-type, WT); and the SC organotypic cultures (OCs) from WT and TG mice. Pathological differences between TG and WT SCOCs were investigated. Relatively to the MN models, we used the modulation with pre-miR-124 (only in WT) and that of anti-miR-124 (only in the TG). The isolated secretomes were incubated in WT and TG SCOCs to assess harmful and/or neuroprotective properties. In TG SCOCs we observed: (i) increased necrotic cell death; (ii) disturbed inflammatory-associated miRNAs (increase in miR-21/miR-146a); (iii) and dysregulated neuronal and glial genes (increased CX3CR1, IL-1β, IL-10, SYP, DRP1, GLT-1 and downregulation of iNOS, HMGB1, Dlg4, CX3CL1 and GFAP). WT-MN secretome counteracted pathological markers in TG SCOCs. In contrast, TG MN secretome induced deleterious effects in WT SCOCs. Secretome from miR-124-enriched WT MNs incubated in WT SCOCs led to a profile of miRNAs and protein-coding genes similar to that caused by the TG MN secretome. On the contrary, the secretome from TG MNs depleted in miR-124 restored a deactivated profile in TG SCOCs. Our data reveals MN upregulation of miR-124 as a key player in ALS pathological processes.
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-01-11
2021-01-11T00:00:00Z
2023-12-02T01:30:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/111128
url http://hdl.handle.net/10362/111128
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138030946091008