Gradient nanofibers for dermal regeneration of hard-to-heal ulcers

Detalhes bibliográficos
Autor(a) principal: Coelho, David José Caetano
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36010
Resumo: Hard-to-heal ulcers are serious life-threatening chronical conditions, impairing skin and mucosa full regeneration and opening the door to debris or severe infections. The cost of treatment also puts national health systems across the globe under pressure. Several products aiming at skin wound healing exist on the market, giving the surgeon different options to choose from when tackling this condition, but there is still the need to develop better solutions in treating different clinical cases, not to mention aesthetical results. Chitosan, originated from the outer skeleton of shrimp and shellfish, is a natural polymer that has been extensively described in the literature, with applications in tissue engineering, drug delivery or vaccine immunogenicity. Being biocompatible and with low toxicity, several biomedical devices have been tested, including nanoparticles, biofilms or nanofibers. Among them, nanofibers reveal an extraordinary similarity to the collagen fibers comprising extracellular matrix, a network that confers nutrient and mechanical support to embedding cells and promotes the formation of new tissue, vital when pursuing skin regeneration. Chitosan fibers can be fabricated by spinning processes, including the widely reported Electrospinning, taking use of electrical fields, or Solution Blow Spinning (SBS), which uses instead heat and solvent evaporation to produce fibers. In the present work, chitosan was spun by SBS to produce scaffolds that can be used in skin wound healing. Due to chitosan chemical nature, spinning with a co-polymer – Polyethylene Oxide (PEO) - was required. The first goal was to develop a three-layered scaffold with different weight ratios of Chitosan and PEO, and a neutralization step in a basic solution revealed promising in extracting PEO. The layer with the highest chitosan content from the scaffold was further functionalized with bioactive molecules, tannic acid and growth factor cocktail-Platelet Lysate, to grant enhanced biological properties. Infrared spectroscopy and Scanning Electron Microscopy revealed the successful interaction between chitosan and the mentioned molecules, with stress-strain testing assuming crucial to analyse variations in mechanical properties. Lastly, the fabricated fibers were subjected to preliminary in vitro testing with Normal Human Dermal Fibroblasts, showing their attachment and proliferation, on what can be seen as a promising step to further characterize the single layered and three-layered scaffolds.
id RCAP_7c0e8faa7d2aec38f31b9e9c40a450db
oai_identifier_str oai:ria.ua.pt:10773/36010
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Gradient nanofibers for dermal regeneration of hard-to-heal ulcersHard-to-heal ulcersChitosanNanofibersScaffoldSolution blow spinningPlatelet lysateTannic acidHard-to-heal ulcers are serious life-threatening chronical conditions, impairing skin and mucosa full regeneration and opening the door to debris or severe infections. The cost of treatment also puts national health systems across the globe under pressure. Several products aiming at skin wound healing exist on the market, giving the surgeon different options to choose from when tackling this condition, but there is still the need to develop better solutions in treating different clinical cases, not to mention aesthetical results. Chitosan, originated from the outer skeleton of shrimp and shellfish, is a natural polymer that has been extensively described in the literature, with applications in tissue engineering, drug delivery or vaccine immunogenicity. Being biocompatible and with low toxicity, several biomedical devices have been tested, including nanoparticles, biofilms or nanofibers. Among them, nanofibers reveal an extraordinary similarity to the collagen fibers comprising extracellular matrix, a network that confers nutrient and mechanical support to embedding cells and promotes the formation of new tissue, vital when pursuing skin regeneration. Chitosan fibers can be fabricated by spinning processes, including the widely reported Electrospinning, taking use of electrical fields, or Solution Blow Spinning (SBS), which uses instead heat and solvent evaporation to produce fibers. In the present work, chitosan was spun by SBS to produce scaffolds that can be used in skin wound healing. Due to chitosan chemical nature, spinning with a co-polymer – Polyethylene Oxide (PEO) - was required. The first goal was to develop a three-layered scaffold with different weight ratios of Chitosan and PEO, and a neutralization step in a basic solution revealed promising in extracting PEO. The layer with the highest chitosan content from the scaffold was further functionalized with bioactive molecules, tannic acid and growth factor cocktail-Platelet Lysate, to grant enhanced biological properties. Infrared spectroscopy and Scanning Electron Microscopy revealed the successful interaction between chitosan and the mentioned molecules, with stress-strain testing assuming crucial to analyse variations in mechanical properties. Lastly, the fabricated fibers were subjected to preliminary in vitro testing with Normal Human Dermal Fibroblasts, showing their attachment and proliferation, on what can be seen as a promising step to further characterize the single layered and three-layered scaffolds.As úlceras de difícil cicatrização são condições crónicas e sérias ameaças à saúde dos doentes, prejudicando a regeneração total da pele e das mucosas e possibilitando a entrada de detritos ou patogéneos capazes de provocar graves infeções. O custo dos tratamentos também coloca os sistemas nacionais de saúde em todo o mundo sob pressão. Existem no mercado diversos produtos focados na cicatrização de feridas cutâneas, dando ao cirurgião diferentes opções de escolha na hora de tratar esta condição, mas ainda há a necessidade de desenvolver soluções mais eficazes no tratamento de diferentes casos clínicos, sem falar nos resultados estéticos. O quitosano, com origem no esqueleto externo de camarões e mariscos, é um polímero natural amplamente descrito na literatura, com aplicações em engenharia de tecidos, entrega de fármacos ou no potenciar da ação das vacinas. Sendo biocompatível e com baixa toxicidade, vários dispositivos biomédicos têm sido testados, incluindo nanopartículas, biofilmes ou nanofibras. Entre estes, as nanofibras revelam uma extraordinária semelhança com as fibras de colágeno que compõem a matriz extracelular, uma rede que confere suporte mecânico e o acesso a nutrientes às células presentes na estrutura e promove a formação de novos tecidos, vitais quando se trata da regeneração da pele. As fibras de quitosao podem ser fabricadas por processos de spinning, incluindo o amplamente divulgado Electrospinning, usando campos elétricos, ou Solution Blow Spinning (SBS), que usa calor e evaporação do solvente na produção de fibras. Neste trabalho, o quitosano foi aplicado num sistema de SBS para produzir scaffolds que podem ser usados na cicatrização de feridas da pele. Devido à natureza química do quitosano, foi necessário empregar um co-polímero – Poli(óxido) de etileno (PEO). O primeiro objetivo passou por desenvolver um scaffold de três camadas com diferentes proporções de quitosano e PEO, e uma etapa de neutralização em uma solução básica revelou-se promissora na extração de PEO. A camada com o maior teor de quitosano do scaffold foi ainda funcionalizada com moléculas bioativas, ácido tânico e lisado de plaquetas – rico em fatores de crescimento -, para aprimorar as propriedades biológicas das fibras. A espectroscopia na região do infravermelho e a Microscopia Eletrónica de Varrimento revelaram a interação bem-sucedida entre o quitosano e as moléculas mencionadas, assumindo os ensaios de tração papel crucial na deteção de variações nas propriedades mecânicas. Por fim, as fibras obtidas foram submetidas a testes preliminares in vitro com Fibroblastos Humanos Normais da Derme, mostrando uma adesão e proliferação satisfatórias, o que pode ser visto como um passo promissor para prosseguir no desenvolvimento dos scaffolds de camada única e de três camadas.2027-12-20T00:00:00Z2022-12-05T00:00:00Z2022-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/36010engCoelho, David José Caetanoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:09:35Zoai:ria.ua.pt:10773/36010Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:00.121598Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
title Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
spellingShingle Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
Coelho, David José Caetano
Hard-to-heal ulcers
Chitosan
Nanofibers
Scaffold
Solution blow spinning
Platelet lysate
Tannic acid
title_short Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
title_full Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
title_fullStr Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
title_full_unstemmed Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
title_sort Gradient nanofibers for dermal regeneration of hard-to-heal ulcers
author Coelho, David José Caetano
author_facet Coelho, David José Caetano
author_role author
dc.contributor.author.fl_str_mv Coelho, David José Caetano
dc.subject.por.fl_str_mv Hard-to-heal ulcers
Chitosan
Nanofibers
Scaffold
Solution blow spinning
Platelet lysate
Tannic acid
topic Hard-to-heal ulcers
Chitosan
Nanofibers
Scaffold
Solution blow spinning
Platelet lysate
Tannic acid
description Hard-to-heal ulcers are serious life-threatening chronical conditions, impairing skin and mucosa full regeneration and opening the door to debris or severe infections. The cost of treatment also puts national health systems across the globe under pressure. Several products aiming at skin wound healing exist on the market, giving the surgeon different options to choose from when tackling this condition, but there is still the need to develop better solutions in treating different clinical cases, not to mention aesthetical results. Chitosan, originated from the outer skeleton of shrimp and shellfish, is a natural polymer that has been extensively described in the literature, with applications in tissue engineering, drug delivery or vaccine immunogenicity. Being biocompatible and with low toxicity, several biomedical devices have been tested, including nanoparticles, biofilms or nanofibers. Among them, nanofibers reveal an extraordinary similarity to the collagen fibers comprising extracellular matrix, a network that confers nutrient and mechanical support to embedding cells and promotes the formation of new tissue, vital when pursuing skin regeneration. Chitosan fibers can be fabricated by spinning processes, including the widely reported Electrospinning, taking use of electrical fields, or Solution Blow Spinning (SBS), which uses instead heat and solvent evaporation to produce fibers. In the present work, chitosan was spun by SBS to produce scaffolds that can be used in skin wound healing. Due to chitosan chemical nature, spinning with a co-polymer – Polyethylene Oxide (PEO) - was required. The first goal was to develop a three-layered scaffold with different weight ratios of Chitosan and PEO, and a neutralization step in a basic solution revealed promising in extracting PEO. The layer with the highest chitosan content from the scaffold was further functionalized with bioactive molecules, tannic acid and growth factor cocktail-Platelet Lysate, to grant enhanced biological properties. Infrared spectroscopy and Scanning Electron Microscopy revealed the successful interaction between chitosan and the mentioned molecules, with stress-strain testing assuming crucial to analyse variations in mechanical properties. Lastly, the fabricated fibers were subjected to preliminary in vitro testing with Normal Human Dermal Fibroblasts, showing their attachment and proliferation, on what can be seen as a promising step to further characterize the single layered and three-layered scaffolds.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-05T00:00:00Z
2022-12-05
2027-12-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36010
url http://hdl.handle.net/10773/36010
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137725651091456