Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/153761 |
Resumo: | Background: While still controversial, it has been demonstrated that vascular defects can precede the onset of other AD hallmarks features, making it an important therapeutic target. Given that the protein transthyretin (TTR) has been established as neuroprotective in AD, here we investigated the influence of TTR in the vasculature. Methods: We evaluated the thickness of the basement membrane and the length of brain microvessels, by immunohistochemistry, in AßPPswe/PS1A246E (AD) transgenic mice and non-transgenic mice (NT) bearing one (TTR+/-) or two (TTR+/+) copies of the TTR gene. The angiogenic potential of TTR was evaluated in vitro using the tube formation assay, and in vivo using the chick chorioallantoic membrane (CAM) assay. Results: AD transgenic mice with TTR genetic reduction, AD/TTR+/-, exhibited a thicker BM in brain microvessels and decreased vessel length than animals with normal TTR levels, AD/TTR+/+. Further in vivo investigation, using the CAM assay, revealed that TTR is a pro-angiogenic molecule, and the neovessels formed are functional. Also, TTR increased the expression of key angiogenic molecules such as proteins interleukins 6 and 8, angiopoietin 2, and vascular endothelial growth factor, by endothelial cells, in vitro, under tube formation conditions. We showed that while TTR reduction also leads to a thicker BM in NT mice, this effect is more pronounced in AD mice than in NT animals, strengthening the idea that TTR is a neuroprotective protein. We also studied the effect of TTR tetrameric stabilization on BM thickness, showing that AD mice treated with the TTR tetrameric stabilizer iododiflunisal (IDIF) displayed a significant reduction of BM thickness and increased vessel length, when compared to non-treated littermates. Conclusion: Our in vivo results demonstrate the involvement of TTR in angiogenesis, particularly as a modulator of vascular alterations occurring in AD. Since TTR is decreased early in AD, its tetrameric stabilization can represent a therapeutic avenue for the early treatment of AD through the maintenance of the vascular structure. |
id |
RCAP_7f58c837cff9fd3dd82ce4cf37566e2f |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/153761 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic propertiesAlzheimer’s diseaseAngiogenesisBasement membraneChick chorioallantoic membrane (CAM) assayNeuroprotectionTransthyretinTTR tetramer stabilizersBackground: While still controversial, it has been demonstrated that vascular defects can precede the onset of other AD hallmarks features, making it an important therapeutic target. Given that the protein transthyretin (TTR) has been established as neuroprotective in AD, here we investigated the influence of TTR in the vasculature. Methods: We evaluated the thickness of the basement membrane and the length of brain microvessels, by immunohistochemistry, in AßPPswe/PS1A246E (AD) transgenic mice and non-transgenic mice (NT) bearing one (TTR+/-) or two (TTR+/+) copies of the TTR gene. The angiogenic potential of TTR was evaluated in vitro using the tube formation assay, and in vivo using the chick chorioallantoic membrane (CAM) assay. Results: AD transgenic mice with TTR genetic reduction, AD/TTR+/-, exhibited a thicker BM in brain microvessels and decreased vessel length than animals with normal TTR levels, AD/TTR+/+. Further in vivo investigation, using the CAM assay, revealed that TTR is a pro-angiogenic molecule, and the neovessels formed are functional. Also, TTR increased the expression of key angiogenic molecules such as proteins interleukins 6 and 8, angiopoietin 2, and vascular endothelial growth factor, by endothelial cells, in vitro, under tube formation conditions. We showed that while TTR reduction also leads to a thicker BM in NT mice, this effect is more pronounced in AD mice than in NT animals, strengthening the idea that TTR is a neuroprotective protein. We also studied the effect of TTR tetrameric stabilization on BM thickness, showing that AD mice treated with the TTR tetrameric stabilizer iododiflunisal (IDIF) displayed a significant reduction of BM thickness and increased vessel length, when compared to non-treated littermates. Conclusion: Our in vivo results demonstrate the involvement of TTR in angiogenesis, particularly as a modulator of vascular alterations occurring in AD. Since TTR is decreased early in AD, its tetrameric stabilization can represent a therapeutic avenue for the early treatment of AD through the maintenance of the vascular structure.BMC20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/153761eng1758-919310.1186/s13195-021-00883-8Gião, TSaavedra, JVieira, JRPinto, MTArsequell, GCardoso, Iinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:20:33Zoai:repositorio-aberto.up.pt:10216/153761Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:21:07.809830Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
title |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
spellingShingle |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties Gião, T Alzheimer’s disease Angiogenesis Basement membrane Chick chorioallantoic membrane (CAM) assay Neuroprotection Transthyretin TTR tetramer stabilizers |
title_short |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
title_full |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
title_fullStr |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
title_full_unstemmed |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
title_sort |
Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties |
author |
Gião, T |
author_facet |
Gião, T Saavedra, J Vieira, JR Pinto, MT Arsequell, G Cardoso, I |
author_role |
author |
author2 |
Saavedra, J Vieira, JR Pinto, MT Arsequell, G Cardoso, I |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Gião, T Saavedra, J Vieira, JR Pinto, MT Arsequell, G Cardoso, I |
dc.subject.por.fl_str_mv |
Alzheimer’s disease Angiogenesis Basement membrane Chick chorioallantoic membrane (CAM) assay Neuroprotection Transthyretin TTR tetramer stabilizers |
topic |
Alzheimer’s disease Angiogenesis Basement membrane Chick chorioallantoic membrane (CAM) assay Neuroprotection Transthyretin TTR tetramer stabilizers |
description |
Background: While still controversial, it has been demonstrated that vascular defects can precede the onset of other AD hallmarks features, making it an important therapeutic target. Given that the protein transthyretin (TTR) has been established as neuroprotective in AD, here we investigated the influence of TTR in the vasculature. Methods: We evaluated the thickness of the basement membrane and the length of brain microvessels, by immunohistochemistry, in AßPPswe/PS1A246E (AD) transgenic mice and non-transgenic mice (NT) bearing one (TTR+/-) or two (TTR+/+) copies of the TTR gene. The angiogenic potential of TTR was evaluated in vitro using the tube formation assay, and in vivo using the chick chorioallantoic membrane (CAM) assay. Results: AD transgenic mice with TTR genetic reduction, AD/TTR+/-, exhibited a thicker BM in brain microvessels and decreased vessel length than animals with normal TTR levels, AD/TTR+/+. Further in vivo investigation, using the CAM assay, revealed that TTR is a pro-angiogenic molecule, and the neovessels formed are functional. Also, TTR increased the expression of key angiogenic molecules such as proteins interleukins 6 and 8, angiopoietin 2, and vascular endothelial growth factor, by endothelial cells, in vitro, under tube formation conditions. We showed that while TTR reduction also leads to a thicker BM in NT mice, this effect is more pronounced in AD mice than in NT animals, strengthening the idea that TTR is a neuroprotective protein. We also studied the effect of TTR tetrameric stabilization on BM thickness, showing that AD mice treated with the TTR tetrameric stabilizer iododiflunisal (IDIF) displayed a significant reduction of BM thickness and increased vessel length, when compared to non-treated littermates. Conclusion: Our in vivo results demonstrate the involvement of TTR in angiogenesis, particularly as a modulator of vascular alterations occurring in AD. Since TTR is decreased early in AD, its tetrameric stabilization can represent a therapeutic avenue for the early treatment of AD through the maintenance of the vascular structure. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/153761 |
url |
https://hdl.handle.net/10216/153761 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1758-9193 10.1186/s13195-021-00883-8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
BMC |
publisher.none.fl_str_mv |
BMC |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136127565692928 |