On Some Stationary INAR(1) Processes with Compound Poisson Distributions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.57805/revstat.v21i3.356 |
Resumo: | Aly and Bouzar ([2]) used the backward approach in presence of the binomial thinning operator to construct underdispersed stationary first-order autoregressive integer valued (INAR (1)) processes. The present paper is to be seen as a continuation of their work. The focus of this paper is on the development of stationary INAR (1) processes with discrete compound Poisson innovations. We expand on some recent results obtained by several authors for these processes. A number of theoretical results are established and then used to develop stationary INAR (1) processes with compound Poisson innovations with finite mean. We apply our results to obtain in detail important distributional properties of the new models when the innovation follows the Polya-Aeppli distribution, the non-central Polya-Aeppli distribution, the negative binomial distribution, the noncentral negative binomial distribution, the Poisson-Lindley distribution, the Euler-type distribution and the Euler distribution. |
id |
RCAP_8092d1a60924f89793791b79bf6af9dc |
---|---|
oai_identifier_str |
oai:revstat:article/356 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Some Stationary INAR(1) Processes with Compound Poisson Distributionsinteger-valued time seriesbinomial thinning operatorinfinite divisibilityEuler distributionAly and Bouzar ([2]) used the backward approach in presence of the binomial thinning operator to construct underdispersed stationary first-order autoregressive integer valued (INAR (1)) processes. The present paper is to be seen as a continuation of their work. The focus of this paper is on the development of stationary INAR (1) processes with discrete compound Poisson innovations. We expand on some recent results obtained by several authors for these processes. A number of theoretical results are established and then used to develop stationary INAR (1) processes with compound Poisson innovations with finite mean. We apply our results to obtain in detail important distributional properties of the new models when the innovation follows the Polya-Aeppli distribution, the non-central Polya-Aeppli distribution, the negative binomial distribution, the noncentral negative binomial distribution, the Poisson-Lindley distribution, the Euler-type distribution and the Euler distribution.Statistics Portugal2023-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v21i3.356https://doi.org/10.57805/revstat.v21i3.356REVSTAT-Statistical Journal; Vol. 21 No. 3 (2023): REVSTAT-Statistical Journal; 321–345REVSTAT; Vol. 21 N.º 3 (2023): REVSTAT-Statistical Journal; 321–3452183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/356https://revstat.ine.pt/index.php/REVSTAT/article/view/356/649Copyright (c) 2021 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessA. A. Aly, Emad-EldinBouzar , Nadjib2023-08-12T06:30:22Zoai:revstat:article/356Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:26:50.151119Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
title |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
spellingShingle |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions A. A. Aly, Emad-Eldin integer-valued time series binomial thinning operator infinite divisibility Euler distribution |
title_short |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
title_full |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
title_fullStr |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
title_full_unstemmed |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
title_sort |
On Some Stationary INAR(1) Processes with Compound Poisson Distributions |
author |
A. A. Aly, Emad-Eldin |
author_facet |
A. A. Aly, Emad-Eldin Bouzar , Nadjib |
author_role |
author |
author2 |
Bouzar , Nadjib |
author2_role |
author |
dc.contributor.author.fl_str_mv |
A. A. Aly, Emad-Eldin Bouzar , Nadjib |
dc.subject.por.fl_str_mv |
integer-valued time series binomial thinning operator infinite divisibility Euler distribution |
topic |
integer-valued time series binomial thinning operator infinite divisibility Euler distribution |
description |
Aly and Bouzar ([2]) used the backward approach in presence of the binomial thinning operator to construct underdispersed stationary first-order autoregressive integer valued (INAR (1)) processes. The present paper is to be seen as a continuation of their work. The focus of this paper is on the development of stationary INAR (1) processes with discrete compound Poisson innovations. We expand on some recent results obtained by several authors for these processes. A number of theoretical results are established and then used to develop stationary INAR (1) processes with compound Poisson innovations with finite mean. We apply our results to obtain in detail important distributional properties of the new models when the innovation follows the Polya-Aeppli distribution, the non-central Polya-Aeppli distribution, the negative binomial distribution, the noncentral negative binomial distribution, the Poisson-Lindley distribution, the Euler-type distribution and the Euler distribution. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v21i3.356 https://doi.org/10.57805/revstat.v21i3.356 |
url |
https://doi.org/10.57805/revstat.v21i3.356 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/356 https://revstat.ine.pt/index.php/REVSTAT/article/view/356/649 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 REVSTAT-Statistical Journal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 21 No. 3 (2023): REVSTAT-Statistical Journal; 321–345 REVSTAT; Vol. 21 N.º 3 (2023): REVSTAT-Statistical Journal; 321–345 2183-0371 1645-6726 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553325837516800 |