Poisson–geometric INAR(1) process for modeling count time series with overdispersion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/49654 |
Resumo: | In this paper, we propose a new first-order non-negative integervalued autoregressive [INAR(1)] process with Poisson–geometric marginals based on binomial thinning for modeling integer-valued time series with overdispersion. Also, the new process has, as a particular case, the Poisson INAR(1) and geometric INAR(1) processes. The main properties of the model are derived, such as probability generating function, moments, conditional distribution, higher-order moments, and jumps. Estimators for the parameters of process are proposed, and their asymptotic properties are established. Some numerical results of the estimators are presented with a discussion of the obtained results. Applications to two real data sets are given to show the potentiality of the new process. |
id |
UFRN_b4942251413c9865d5bffd6816a54d90 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/49654 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Bourguignon, Marcelo2022-10-31T20:10:44Z2022-10-31T20:10:44Z2016BOURGUIGNON, Marcelo. Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica, v. 70, p. 176-192, 2016. Disponível em:<http://onlinelibrary.wiley.com/doi/10.1111/stan.12082/abstract>. Acesso em: 07 dez. 20170039-0402https://repositorio.ufrn.br/handle/123456789/49654Statistica NeerlandicaPoisson distributionGeometric distributionInteger-valued time seriesEstimationAsymptotic normalityPoisson–geometric INAR(1) process for modeling count time series with overdispersioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper, we propose a new first-order non-negative integervalued autoregressive [INAR(1)] process with Poisson–geometric marginals based on binomial thinning for modeling integer-valued time series with overdispersion. Also, the new process has, as a particular case, the Poisson INAR(1) and geometric INAR(1) processes. The main properties of the model are derived, such as probability generating function, moments, conditional distribution, higher-order moments, and jumps. Estimators for the parameters of process are proposed, and their asymptotic properties are established. Some numerical results of the estimators are presented with a discussion of the obtained results. Applications to two real data sets are given to show the potentiality of the new process.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49654/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/496542022-10-31 17:12:08.828oai:https://repositorio.ufrn.br:123456789/49654Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-31T20:12:08Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
title |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
spellingShingle |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion Bourguignon, Marcelo Poisson distribution Geometric distribution Integer-valued time series Estimation Asymptotic normality |
title_short |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
title_full |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
title_fullStr |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
title_full_unstemmed |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
title_sort |
Poisson–geometric INAR(1) process for modeling count time series with overdispersion |
author |
Bourguignon, Marcelo |
author_facet |
Bourguignon, Marcelo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bourguignon, Marcelo |
dc.subject.por.fl_str_mv |
Poisson distribution Geometric distribution Integer-valued time series Estimation Asymptotic normality |
topic |
Poisson distribution Geometric distribution Integer-valued time series Estimation Asymptotic normality |
description |
In this paper, we propose a new first-order non-negative integervalued autoregressive [INAR(1)] process with Poisson–geometric marginals based on binomial thinning for modeling integer-valued time series with overdispersion. Also, the new process has, as a particular case, the Poisson INAR(1) and geometric INAR(1) processes. The main properties of the model are derived, such as probability generating function, moments, conditional distribution, higher-order moments, and jumps. Estimators for the parameters of process are proposed, and their asymptotic properties are established. Some numerical results of the estimators are presented with a discussion of the obtained results. Applications to two real data sets are given to show the potentiality of the new process. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016 |
dc.date.accessioned.fl_str_mv |
2022-10-31T20:10:44Z |
dc.date.available.fl_str_mv |
2022-10-31T20:10:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BOURGUIGNON, Marcelo. Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica, v. 70, p. 176-192, 2016. Disponível em:<http://onlinelibrary.wiley.com/doi/10.1111/stan.12082/abstract>. Acesso em: 07 dez. 2017 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/49654 |
dc.identifier.issn.none.fl_str_mv |
0039-0402 |
identifier_str_mv |
BOURGUIGNON, Marcelo. Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica, v. 70, p. 176-192, 2016. Disponível em:<http://onlinelibrary.wiley.com/doi/10.1111/stan.12082/abstract>. Acesso em: 07 dez. 2017 0039-0402 |
url |
https://repositorio.ufrn.br/handle/123456789/49654 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Statistica Neerlandica |
publisher.none.fl_str_mv |
Statistica Neerlandica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/49654/2/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832810654957568 |