Laplacian spread of graphs: lower bounds and relations with invariant parameters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15030 |
Resumo: | The spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, independence number and vertex connectivity. |
id |
RCAP_809ed20db7517702f42af6770fec7882 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15030 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Laplacian spread of graphs: lower bounds and relations with invariant parametersSpectral Graph TheoryMatrix spreadLaplacian SpreadThe spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, independence number and vertex connectivity.Elsevier2018-07-20T14:00:51Z2015-12-01T00:00:00Z2015-12-012016-11-30T12:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15030eng0024-379510.1016/j.laa.2015.08.027Andrade, EnideCardoso, DomingosRobbiano, MariaRodriguez, Jonnathaninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T03:55:47Zoai:ria.ua.pt:10773/15030Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T03:55:47Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
title |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
spellingShingle |
Laplacian spread of graphs: lower bounds and relations with invariant parameters Andrade, Enide Spectral Graph Theory Matrix spread Laplacian Spread |
title_short |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
title_full |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
title_fullStr |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
title_full_unstemmed |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
title_sort |
Laplacian spread of graphs: lower bounds and relations with invariant parameters |
author |
Andrade, Enide |
author_facet |
Andrade, Enide Cardoso, Domingos Robbiano, Maria Rodriguez, Jonnathan |
author_role |
author |
author2 |
Cardoso, Domingos Robbiano, Maria Rodriguez, Jonnathan |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Andrade, Enide Cardoso, Domingos Robbiano, Maria Rodriguez, Jonnathan |
dc.subject.por.fl_str_mv |
Spectral Graph Theory Matrix spread Laplacian Spread |
topic |
Spectral Graph Theory Matrix spread Laplacian Spread |
description |
The spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, independence number and vertex connectivity. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01T00:00:00Z 2015-12-01 2016-11-30T12:00:00Z 2018-07-20T14:00:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15030 |
url |
http://hdl.handle.net/10773/15030 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2015.08.027 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543547279114240 |