Laplacian spread of graphs: lower bounds and relations with invariant parameters

Detalhes bibliográficos
Autor(a) principal: Andrade, Enide
Data de Publicação: 2015
Outros Autores: Cardoso, Domingos, Robbiano, Maria, Rodriguez, Jonnathan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15030
Resumo: The spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, independence number and vertex connectivity.
id RCAP_809ed20db7517702f42af6770fec7882
oai_identifier_str oai:ria.ua.pt:10773/15030
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Laplacian spread of graphs: lower bounds and relations with invariant parametersSpectral Graph TheoryMatrix spreadLaplacian SpreadThe spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, independence number and vertex connectivity.Elsevier2018-07-20T14:00:51Z2015-12-01T00:00:00Z2015-12-012016-11-30T12:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15030eng0024-379510.1016/j.laa.2015.08.027Andrade, EnideCardoso, DomingosRobbiano, MariaRodriguez, Jonnathaninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T03:55:47Zoai:ria.ua.pt:10773/15030Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T03:55:47Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Laplacian spread of graphs: lower bounds and relations with invariant parameters
title Laplacian spread of graphs: lower bounds and relations with invariant parameters
spellingShingle Laplacian spread of graphs: lower bounds and relations with invariant parameters
Andrade, Enide
Spectral Graph Theory
Matrix spread
Laplacian Spread
title_short Laplacian spread of graphs: lower bounds and relations with invariant parameters
title_full Laplacian spread of graphs: lower bounds and relations with invariant parameters
title_fullStr Laplacian spread of graphs: lower bounds and relations with invariant parameters
title_full_unstemmed Laplacian spread of graphs: lower bounds and relations with invariant parameters
title_sort Laplacian spread of graphs: lower bounds and relations with invariant parameters
author Andrade, Enide
author_facet Andrade, Enide
Cardoso, Domingos
Robbiano, Maria
Rodriguez, Jonnathan
author_role author
author2 Cardoso, Domingos
Robbiano, Maria
Rodriguez, Jonnathan
author2_role author
author
author
dc.contributor.author.fl_str_mv Andrade, Enide
Cardoso, Domingos
Robbiano, Maria
Rodriguez, Jonnathan
dc.subject.por.fl_str_mv Spectral Graph Theory
Matrix spread
Laplacian Spread
topic Spectral Graph Theory
Matrix spread
Laplacian Spread
description The spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, independence number and vertex connectivity.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01T00:00:00Z
2015-12-01
2016-11-30T12:00:00Z
2018-07-20T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15030
url http://hdl.handle.net/10773/15030
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0024-3795
10.1016/j.laa.2015.08.027
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543547279114240