Upper bounds on the Laplacian energy of some graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/4287 |
Resumo: | The Laplacian energy L£[G] of a simple graph G with n vertices and m edges is equal to the sum of distances of the Laplacian eigenvalues to their average. For 1 ≤ j ≤ s, let Aj be matrices of orders n j. Suppose that det(L(G) - λIn) = Πj=1s det(Aj- - λI n,j)tj, with tj > 0. In the present paper we prove LE[G) ≤ Σ j=1stj√n j||Aj-2m/n||F≤ √n||L(G) - 2m/nIn||F , where ||·||F stands for the Frobenius matrix norm. |
id |
RCAP_86cd2ea2581a04c5249a61db6623e3c1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/4287 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Upper bounds on the Laplacian energy of some graphsLaplacian matrixGraphBethe treeLaplacian energyThe Laplacian energy L£[G] of a simple graph G with n vertices and m edges is equal to the sum of distances of the Laplacian eigenvalues to their average. For 1 ≤ j ≤ s, let Aj be matrices of orders n j. Suppose that det(L(G) - λIn) = Πj=1s det(Aj- - λI n,j)tj, with tj > 0. In the present paper we prove LE[G) ≤ Σ j=1stj√n j||Aj-2m/n||F≤ √n||L(G) - 2m/nIn||F , where ||·||F stands for the Frobenius matrix norm.University of Kragujevac10000-01-01T00:00:00Z2010-01-01T00:00:00Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4287eng0340-6253Robbiano, M.Martins, E. A.Jiménez, R.Martín, B. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:04:35Zoai:ria.ua.pt:10773/4287Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:14.592793Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Upper bounds on the Laplacian energy of some graphs |
title |
Upper bounds on the Laplacian energy of some graphs |
spellingShingle |
Upper bounds on the Laplacian energy of some graphs Robbiano, M. Laplacian matrix Graph Bethe tree Laplacian energy |
title_short |
Upper bounds on the Laplacian energy of some graphs |
title_full |
Upper bounds on the Laplacian energy of some graphs |
title_fullStr |
Upper bounds on the Laplacian energy of some graphs |
title_full_unstemmed |
Upper bounds on the Laplacian energy of some graphs |
title_sort |
Upper bounds on the Laplacian energy of some graphs |
author |
Robbiano, M. |
author_facet |
Robbiano, M. Martins, E. A. Jiménez, R. Martín, B. S. |
author_role |
author |
author2 |
Martins, E. A. Jiménez, R. Martín, B. S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Robbiano, M. Martins, E. A. Jiménez, R. Martín, B. S. |
dc.subject.por.fl_str_mv |
Laplacian matrix Graph Bethe tree Laplacian energy |
topic |
Laplacian matrix Graph Bethe tree Laplacian energy |
description |
The Laplacian energy L£[G] of a simple graph G with n vertices and m edges is equal to the sum of distances of the Laplacian eigenvalues to their average. For 1 ≤ j ≤ s, let Aj be matrices of orders n j. Suppose that det(L(G) - λIn) = Πj=1s det(Aj- - λI n,j)tj, with tj > 0. In the present paper we prove LE[G) ≤ Σ j=1stj√n j||Aj-2m/n||F≤ √n||L(G) - 2m/nIn||F , where ||·||F stands for the Frobenius matrix norm. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
10000-01-01T00:00:00Z 2010-01-01T00:00:00Z 2010 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/4287 |
url |
http://hdl.handle.net/10773/4287 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0340-6253 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
University of Kragujevac |
publisher.none.fl_str_mv |
University of Kragujevac |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137470823006208 |